Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Commun ; 12(1): 6442, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750360

RESUMEN

The genetic architecture of atrial fibrillation (AF) encompasses low impact, common genetic variants and high impact, rare variants. Here, we characterize a high impact AF-susceptibility allele, KCNQ1 R231H, and describe its transcontinental geographic distribution and history. Induced pluripotent stem cell-derived cardiomyocytes procured from risk allele carriers exhibit abbreviated action potential duration, consistent with a gain-of-function effect. Using identity-by-descent (IBD) networks, we estimate the broad- and fine-scale population ancestry of risk allele carriers and their relatives. Analysis of ancestral migration routes reveals ancestors who inhabited Denmark in the 1700s, migrated to the Northeastern United States in the early 1800s, and traveled across the Midwest to arrive in Utah in the late 1800s. IBD/coalescent-based allele dating analysis reveals a relatively recent origin of the AF risk allele (~5000 years). Thus, our approach broadens the scope of study for disease susceptibility alleles to the context of human migration and ancestral origins.


Asunto(s)
Fibrilación Atrial/genética , Predisposición Genética a la Enfermedad/genética , Canal de Potasio KCNQ1/genética , Mutación Missense , Polimorfismo de Nucleótido Simple , Potenciales de Acción , Alelos , Dinamarca , Emigrantes e Inmigrantes , Femenino , Genotipo , Geografía , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Linaje , Factores de Riesgo , Utah
2.
G3 (Bethesda) ; 9(9): 2863-2878, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31484785

RESUMEN

We present a massive investigation into the genetic basis of human lifespan. Beginning with a genome-wide association (GWA) study using a de-identified snapshot of the unique AncestryDNA database - more than 300,000 genotyped individuals linked to pedigrees of over 400,000,000 people - we mapped six genome-wide significant loci associated with parental lifespan. We compared these results to a GWA analysis of the traditional lifespan proxy trait, age, and found only one locus, APOE, to be associated with both age and lifespan. By combining the AncestryDNA results with those of an independent UK Biobank dataset, we conducted a meta-analysis of more than 650,000 individuals and identified fifteen parental lifespan-associated loci. Beyond just those significant loci, our genome-wide set of polymorphisms accounts for up to 8% of the variance in human lifespan; this value represents a large fraction of the heritability estimated from phenotypic correlations between relatives.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Longevidad/genética , Anciano , Anciano de 80 o más Años , Apolipoproteínas E/genética , Proteínas Portadoras/genética , Bases de Datos Genéticas , Femenino , Humanos , Masculino , Proteínas Nucleares/genética , Linaje , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Proteínas Proto-Oncogénicas/genética
3.
Genetics ; 210(3): 1109-1124, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30401766

RESUMEN

Human life span is a phenotype that integrates many aspects of health and environment into a single ultimate quantity: the elapsed time between birth and death. Though it is widely believed that long life runs in families for genetic reasons, estimates of life span "heritability" are consistently low (∼15-30%). Here, we used pedigree data from Ancestry public trees, including hundreds of millions of historical persons, to estimate the heritability of human longevity. Although "nominal heritability" estimates based on correlations among genetic relatives agreed with prior literature, the majority of that correlation was also captured by correlations among nongenetic (in-law) relatives, suggestive of highly assortative mating around life span-influencing factors (genetic and/or environmental). We used structural equation modeling to account for assortative mating, and concluded that the true heritability of human longevity for birth cohorts across the 1800s and early 1900s was well below 10%, and that it has been generally overestimated due to the effect of assortative mating.


Asunto(s)
Longevidad/genética , Reproducción , Femenino , Humanos , Masculino , Modelos Genéticos , Linaje
4.
J Immunol ; 200(8): 2640-2655, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29549179

RESUMEN

The functions of human NK cells in defense against pathogens and placental development during reproduction are modulated by interactions of killer cell Ig-like receptors (KIRs) with HLA-A, -B and -C class I ligands. Both receptors and ligands are highly polymorphic and exhibit extensive differences between human populations. Indigenous to southern Africa are the KhoeSan, the most ancient group of modern human populations, who have highest genomic diversity worldwide. We studied two KhoeSan populations, the Nama pastoralists and the ≠Khomani San hunter-gatherers. Comprehensive next-generation sequence analysis of HLA-A, -B, and -C and all KIR genes identified 248 different KIR and 137 HLA class I, which assort into ∼200 haplotypes for each gene family. All 74 Nama and 78 ≠Khomani San studied have different genotypes. Numerous novel KIR alleles were identified, including three arising by intergenic recombination. On average, KhoeSan individuals have seven to eight pairs of interacting KIR and HLA class I ligands, the highest diversity and divergence of polymorphic NK cell receptors and ligands observed to date. In this context of high genetic diversity, both the Nama and the ≠Khomani San have an unusually conserved, centromeric KIR haplotype that has arisen to high frequency and is different in the two KhoeSan populations. Distinguishing these haplotypes are independent mutations in KIR2DL1, which both prevent KIR2DL1 from functioning as an inhibitory receptor for C2+ HLA-C. The relatively high frequency of C2+ HLA-C in the Nama and the ≠Khomani San appears to have led to natural selection against strong inhibitory C2-specific KIR.


Asunto(s)
Antígenos HLA-C/genética , Receptores KIR2DL1/genética , África Austral , Femenino , Genes MHC Clase I/genética , Haplotipos/genética , Humanos , Células Asesinas Naturales/fisiología , Ligandos , Masculino , Polimorfismo Genético/genética , Receptores KIR/genética , Receptores de Células Asesinas Naturales/genética , Selección Genética/genética
5.
Cell ; 171(6): 1340-1353.e14, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29195075

RESUMEN

Approximately 15 genes have been directly associated with skin pigmentation variation in humans, leading to its characterization as a relatively simple trait. However, by assembling a global survey of quantitative skin pigmentation phenotypes, we demonstrate that pigmentation is more complex than previously assumed, with genetic architecture varying by latitude. We investigate polygenicity in the KhoeSan populations indigenous to southern Africa who have considerably lighter skin than equatorial Africans. We demonstrate that skin pigmentation is highly heritable, but known pigmentation loci explain only a small fraction of the variance. Rather, baseline skin pigmentation is a complex, polygenic trait in the KhoeSan. Despite this, we identify canonical and non-canonical skin pigmentation loci, including near SLC24A5, TYRP1, SMARCA2/VLDLR, and SNX13, using a genome-wide association approach complemented by targeted resequencing. By considering diverse, under-studied African populations, we show how the architecture of skin pigmentation can vary across humans subject to different local evolutionary pressures.


Asunto(s)
Pigmentación de la Piel , África , Población Negra/genética , Humanos , Polimorfismo de Nucleótido Simple
6.
Nat Commun ; 8: 14238, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28169989

RESUMEN

Despite strides in characterizing human history from genetic polymorphism data, progress in identifying genetic signatures of recent demography has been limited. Here we identify very recent fine-scale population structure in North America from a network of over 500 million genetic (identity-by-descent, IBD) connections among 770,000 genotyped individuals of US origin. We detect densely connected clusters within the network and annotate these clusters using a database of over 20 million genealogical records. Recent population patterns captured by IBD clustering include immigrants such as Scandinavians and French Canadians; groups with continental admixture such as Puerto Ricans; settlers such as the Amish and Appalachians who experienced geographic or cultural isolation; and broad historical trends, including reduced north-south gene flow. Our results yield a detailed historical portrait of North America after European settlement and support substantial genetic heterogeneity in the United States beyond that uncovered by previous studies.


Asunto(s)
Demografía/estadística & datos numéricos , Genética de Población/métodos , Dinámica Poblacional/tendencias , Población/genética , Análisis por Conglomerados , Demografía/métodos , Emigrantes e Inmigrantes , Flujo Génico/genética , Técnicas de Genotipaje , Haplotipos/genética , Humanos , Polimorfismo de Nucleótido Simple , Dinámica Poblacional/estadística & datos numéricos , Análisis de Secuencia de ADN , Estados Unidos/etnología
7.
Hum Genomics ; 8: 1, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24405978

RESUMEN

BACKGROUND: Phenotypic variation along environmental gradients has been documented among and within many species, and in some cases, genetic variation has been shown to be associated with these gradients. Bayenv is a relatively new method developed to detect patterns of polymorphisms associated with environmental gradients. Using a Bayesian Markov Chain Monte Carlo (MCMC) approach, Bayenv evaluates whether a linear model relating population allele frequencies to environmental variables is more probable than a null model based on observed frequencies of neutral markers. Although this method has been used to detect environmental adaptation in a number of species, including humans, plants, fish, and mosquitoes, stability between independent runs of this MCMC algorithm has not been characterized. In this paper, we explore the variability of results between runs and the factors contributing to it. RESULTS: Independent runs of the Bayenv program were carried out using genome-wide single-nucleotide polymorphism (SNP) data from samples from 60 worldwide human populations following previous applications of the Bayenv method. To assess factors contributing to the method's stability, we used varying numbers of MCMC iterations and also analyzed a second modified data set that excluded two Siberian populations with extreme climate variables. Between any two runs, correlations between Bayes factors and the overlap of SNPs in the empirical p value tails were surprisingly low. Enrichments of genic versus non-genic SNPs in the empirical tails were more robust than the empirical p values; however, the significance of the enrichments for some environmental variables still varied among runs, contradicting previously published conclusions. Runs with a greater number of MCMC iterations slightly reduced run-to-run variability, and excluding the Siberian populations did not have a large effect on the stability of the runs. CONCLUSIONS: Because of high run-to-run variability, we advise against making conclusions about genome-wide patterns of adaptation based on only one run of the Bayenv algorithm and recommend caution in interpreting previous studies that have used only one run. Moving forward, we suggest carrying out multiple independent runs of Bayenv and averaging Bayes factors between runs to produce more stable and reliable results. With these modifications, future discoveries of environmental adaptation within species using the Bayenv method will be more accurate, interpretable, and easily compared between studies.


Asunto(s)
Teorema de Bayes , Estudio de Asociación del Genoma Completo , Cadenas de Markov , Método de Montecarlo , Ambiente , Frecuencia de los Genes , Variación Genética , Genoma Humano , Humanos , Polimorfismo de Nucleótido Simple/genética , Población
8.
PLoS Pathog ; 9(8): e1003543, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23966858

RESUMEN

Mycobacterium tuberculosis (M.tb), the cause of tuberculosis (TB), is estimated to infect a new host every second. While analyses of genetic data from natural populations of M.tb have emphasized the role of genetic drift in shaping patterns of diversity, the influence of natural selection on this successful pathogen is less well understood. We investigated the effects of natural selection on patterns of diversity in 63 globally extant genomes of M.tb and related pathogenic mycobacteria. We found evidence of strong purifying selection, with an estimated genome-wide selection coefficient equal to -9.5 × 10(-4) (95% CI -1.1 × 10(-3) to -6.8 × 10(-4)); this is several orders of magnitude higher than recent estimates for eukaryotic and prokaryotic organisms. We also identified different patterns of variation across categories of gene function. Genes involved in transport and metabolism of inorganic ions exhibited very low levels of non-synonymous polymorphism, equivalent to categories under strong purifying selection (essential and translation-associated genes). The highest levels of non-synonymous variation were seen in a group of transporter genes, likely due to either diversifying selection or local selective sweeps. In addition to selection, we identified other important influences on M.tb genetic diversity, such as a 25-fold expansion of global M.tb populations coincident with explosive growth in human populations (estimated timing 1684 C.E., 95% CI 1620-1713 C.E.). These results emphasize the parallel demographic histories of this obligate pathogen and its human host, and suggest that the dominant effect of selection on M.tb is removal of novel variants, with exceptions in an interesting group of genes involved in transportation and defense. We speculate that the hostile environment within a host imposes strict demands on M.tb physiology, and thus a substantial fitness cost for most new mutations. In this respect, obligate bacterial pathogens may differ from other host-associated microbes such as symbionts.


Asunto(s)
Evolución Molecular , Mycobacterium tuberculosis/genética , Polimorfismo Genético/genética , Selección Genética/genética , Tuberculosis/microbiología , Genoma Bacteriano , Humanos , Mycobacterium tuberculosis/clasificación , Filogenia , Recombinación Genética , Tuberculosis/genética
9.
Hum Biol ; 85(6): 825-58, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25079122

RESUMEN

The Samaritans are a group of some 750 indigenous Middle Eastern people, about half of whom live in Holon, a suburb of Tel Aviv, and the other half near Nablus. The Samaritan population is believed to have numbered more than a million in late Roman times but less than 150 in 1917. The ancestry of the Samaritans has been subject to controversy from late Biblical times to the present. In this study, liquid chromatography/electrospray ionization/quadrupole ion trap mass spectrometry was used to allelotype 13 Y-chromosomal and 15 autosomal microsatellites in a sample of 12 Samaritans chosen to have as low a level of relationship as possible, and 461 Jews and non-Jews. Estimation of genetic distances between the Samaritans and seven Jewish and three non-Jewish populations from Israel, as well as populations from Africa, Pakistan, Turkey, and Europe, revealed that the Samaritans were closely related to Cohanim. This result supports the position of the Samaritans that they are descendants from the tribes of Israel dating to before the Assyrian exile in 722-720 BCE. In concordance with previously published single-nucleotide polymorphism haplotypes, each Samaritan family, with the exception of the Samaritan Cohen lineage, was observed to carry a distinctive Y-chromosome short tandem repeat haplotype that was not more than one mutation removed from the six-marker Cohen modal haplotype.


Asunto(s)
Cromosomas Humanos Y/genética , Judíos/genética , Repeticiones de Microsatélite/genética , Variación Genética/genética , Genética de Población , Genotipo , Historia Antigua , Humanos , Israel/etnología , Judíos/historia , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Espectrometría de Masa por Ionización de Electrospray
10.
Genetics ; 192(3): 1049-64, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22960214

RESUMEN

While hundreds of loci have been identified as reflecting strong-positive selection in human populations, connections between candidate loci and specific selective pressures often remain obscure. This study investigates broader patterns of selection in African populations, which are underrepresented despite their potential to offer key insights into human adaptation. We scan for hard selective sweeps using several haplotype and allele-frequency statistics with a data set of nearly 500,000 genome-wide single-nucleotide polymorphisms in 12 highly diverged African populations that span a range of environments and subsistence strategies. We find that positive selection does not appear to be a strong determinant of allele-frequency differentiation among these African populations. Haplotype statistics do identify putatively selected regions that are shared across African populations. However, as assessed by extensive simulations, patterns of haplotype sharing between African populations follow neutral expectations and suggest that tails of the empirical distributions contain false-positive signals. After highlighting several genomic regions where positive selection can be inferred with higher confidence, we use a novel method to identify biological functions enriched among populations' empirical tail genomic windows, such as immune response in agricultural groups. In general, however, it seems that current methods for selection scans are poorly suited to populations that, like the African populations in this study, are affected by ascertainment bias and have low levels of linkage disequilibrium, possibly old selective sweeps, and potentially reduced phasing accuracy. Additionally, population history can confound the interpretation of selection statistics, suggesting that greater care is needed in attributing broad genetic patterns to human adaptation.


Asunto(s)
Población Negra/genética , Selección Genética , Análisis por Conglomerados , Simulación por Computador , Genética de Población , Haplotipos , Humanos , Modelos Genéticos , Polimorfismo de Nucleótido Simple
11.
Proc Natl Acad Sci U S A ; 108(16): 6526-31, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21464295

RESUMEN

Patterns of gene flow can have marked effects on the evolution of populations. To better understand the migration dynamics of Mycobacterium tuberculosis, we studied genetic data from European M. tuberculosis lineages currently circulating in Aboriginal and French Canadian communities. A single M. tuberculosis lineage, characterized by the DS6(Quebec) genomic deletion, is at highest frequency among Aboriginal populations in Ontario, Saskatchewan, and Alberta; this bacterial lineage is also dominant among tuberculosis (TB) cases in French Canadians resident in Quebec. Substantial contact between these human populations is limited to a specific historical era (1710-1870), during which individuals from these populations met to barter furs. Statistical analyses of extant M. tuberculosis minisatellite data are consistent with Quebec as a source population for M. tuberculosis gene flow into Aboriginal populations during the fur trade era. Historical and genetic analyses suggest that tiny M. tuberculosis populations persisted for ∼100 y among indigenous populations and subsequently expanded in the late 19th century after environmental changes favoring the pathogen. Our study suggests that spread of TB can occur by two asynchronous processes: (i) dispersal of M. tuberculosis by minimal numbers of human migrants, during which small pathogen populations are sustained by ongoing migration and slow disease dynamics, and (ii) expansion of the M. tuberculosis population facilitated by shifts in host ecology. If generalizable, these migration dynamics can help explain the low DNA sequence diversity observed among isolates of M. tuberculosis and the difficulties in global elimination of tuberculosis, as small, widely dispersed pathogen populations are difficult both to detect and to eradicate.


Asunto(s)
ADN Bacteriano/genética , Emigración e Inmigración/historia , Indígenas Norteamericanos/historia , Mycobacterium tuberculosis/genética , Tuberculosis , Población Blanca/historia , Canadá , Flujo Génico , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Humanos , Tuberculosis/epidemiología , Tuberculosis/genética , Tuberculosis/historia
12.
Proc Natl Acad Sci U S A ; 108(13): 5154-62, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21383195

RESUMEN

Africa is inferred to be the continent of origin for all modern human populations, but the details of human prehistory and evolution in Africa remain largely obscure owing to the complex histories of hundreds of distinct populations. We present data for more than 580,000 SNPs for several hunter-gatherer populations: the Hadza and Sandawe of Tanzania, and the ≠Khomani Bushmen of South Africa, including speakers of the nearly extinct N|u language. We find that African hunter-gatherer populations today remain highly differentiated, encompassing major components of variation that are not found in other African populations. Hunter-gatherer populations also tend to have the lowest levels of genome-wide linkage disequilibrium among 27 African populations. We analyzed geographic patterns of linkage disequilibrium and population differentiation, as measured by F(ST), in Africa. The observed patterns are consistent with an origin of modern humans in southern Africa rather than eastern Africa, as is generally assumed. Additionally, genetic variation in African hunter-gatherer populations has been significantly affected by interaction with farmers and herders over the past 5,000 y, through both severe population bottlenecks and sex-biased migration. However, African hunter-gatherer populations continue to maintain the highest levels of genetic diversity in the world.


Asunto(s)
Evolución Biológica , Población Negra/genética , Variación Genética , Genética de Población , Polimorfismo de Nucleótido Simple , África , Cultura , Etnicidad/genética , Genoma Humano , Humanos , Desequilibrio de Ligamiento
13.
Genetics ; 184(3): 827-37, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20026678

RESUMEN

Modern genomewide association studies are characterized by the problem of "missing heritability." Epistasis, or genetic interaction, has been suggested as a possible explanation for the relatively small contribution of single significant associations to the fraction of variance explained. Of particular concern to investigators of genetic interactions is how to best represent and define epistasis. Previous studies have found that the use of different quantitative definitions for genetic interaction can lead to different conclusions when constructing genetic interaction networks and when addressing evolutionary questions. We suggest that instead, multiple representations of epistasis, or epistatic "subtypes," may be valid within a given system. Selecting among these epistatic subtypes may provide additional insight into the biological and functional relationships among pairs of genes. In this study, we propose maximum-likelihood and model selection methods in a hypothesis-testing framework to choose epistatic subtypes that best represent functional relationships for pairs of genes on the basis of fitness data from both single and double mutants in haploid systems. We gauge the performance of our method with extensive simulations under various interaction scenarios. Our approach performs reasonably well in detecting the most likely epistatic subtype for pairs of genes, as well as in reducing bias when estimating the epistatic parameter (epsilon). We apply our approach to two available data sets from yeast (Saccharomyces cerevisiae) and demonstrate through overlap of our identified epistatic pairs with experimentally verified interactions and functional links that our results are likely of biological significance in understanding interaction mechanisms. We anticipate that our method will improve detection of epistatic interactions and will help to unravel the mysteries of complex biological systems.


Asunto(s)
Arabidopsis/genética , Epistasis Genética/fisiología , Haplotipos/genética , Modelos Genéticos , Método de Montecarlo , Sitios de Carácter Cuantitativo/fisiología , Teorema de Bayes , Clasificación/métodos , Humanos
14.
Genetics ; 181(4): 1493-505, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19189949

RESUMEN

Assessing the extent of linkage disequilibrium (LD) in natural populations of a nonmodel species has been difficult due to the lack of available genomic markers. However, with advances in genotyping and genome sequencing, genomic characterization of natural populations has become feasible. Using sequence data and SNP genotypes, we measured LD and modeled the demographic history of wild canid populations and domestic dog breeds. In 11 gray wolf populations and one coyote population, we find that the extent of LD as measured by the distance at which r2=0.2 extends <10 kb in outbred populations to >1.7 Mb in populations that have experienced significant founder events and bottlenecks. This large range in the extent of LD parallels that observed in 18 dog breeds where the r2 value varies from approximately 20 kb to >5 Mb. Furthermore, in modeling demographic history under a composite-likelihood framework, we find that two of five wild canid populations exhibit evidence of a historical population contraction. Five domestic dog breeds display evidence for a minor population contraction during domestication and a more severe contraction during breed formation. Only a 5% reduction in nucleotide diversity was observed as a result of domestication, whereas the loss of nucleotide diversity with breed formation averaged 35%.


Asunto(s)
Canidae/genética , Demografía , Desequilibrio de Ligamiento , Animales , Animales Domésticos/genética , Animales Salvajes/genética , Cruzamientos Genéticos , Variación Genética , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...