Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Asthma Allergy ; 15: 1623-1637, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387836

RESUMEN

Purpose: Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to determine if data from an integrated digital inhaler could be used to develop a machine learning model capable of predicting impending exacerbations. Patients and Methods: Adult patients with poorly controlled asthma were enrolled in a 12-week, open-label study using ProAir® Digihaler®, an electronic multi-dose dry powder inhaler (eMDPI) with integrated sensors, as reliever medication (albuterol, 90 µg/dose; 1-2 inhalations every 4 hours, as needed). Throughout the study, the eMDPI recorded inhaler use, peak inspiratory flow (PIF), inhalation volume, inhalation duration, and time to PIF. A model predictive of impending exacerbations was generated by applying machine learning techniques to data downloaded from the inhalers, together with clinical and demographic information. The generated model was evaluated by receiver operating characteristic area under curve (ROC AUC) analysis. Results: Of 360 patients included in the predictive analysis, 64 experienced a total of 78 exacerbations. Increased albuterol use preceded exacerbations; the mean number of inhalations in the 24-hours preceding an exacerbation was 7.3 (standard deviation 17.3). The machine learning model, using gradient-boosting trees with data from the eMDPI and baseline patient characteristics, predicted an impending exacerbation over the following 5 days with an ROC AUC of 0.83 (95% confidence interval: 0.77-0.90). The feature of the model with the highest weight was the mean number of daily inhalations during the 4 days prior to the day the prediction was made. Conclusion: A machine learning model to predict impending asthma exacerbations using data from the eMDPI was successfully developed. This approach may support a shift from reactive care to proactive, preventative, and personalized management of chronic respiratory diseases.

2.
Mov Disord ; 36(9): 2144-2155, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33955603

RESUMEN

BACKGROUND: It is not clear how specific gait measures reflect disease severity across the disease spectrum in Parkinson's disease (PD). OBJECTIVE: To identify the gait and mobility measures that are most sensitive and reflective of PD motor stages and determine the optimal sensor location in each disease stage. METHODS: Cross-sectional wearable-sensor records were collected in 332 patients with PD (Hoehn and Yahr scale I-III) and 100 age-matched healthy controls. Sensors were adhered to the participant's lower back, bilateral ankles, and wrists. Study participants walked in a ~15-meter corridor for 1 minute under two walking conditions: (1) preferred, usual walking speed and (2) walking while engaging in a cognitive task (dual-task). A subgroup (n = 303, 67% PD) also performed the Timed Up and Go test. Multiple machine-learning feature selection and classification algorithms were applied to discriminate between controls and PD and between the different PD severity stages. RESULTS: High discriminatory values were found between motor disease stages with mean sensitivity in the range 72%-83%, specificity 69%-80%, and area under the curve (AUC) 0.76-0.90. Measures from upper-limb sensors best discriminated controls from early PD, turning measures obtained from the trunk sensor were prominent in mid-stage PD, and stride timing and regularity were discriminative in more advanced stages. CONCLUSIONS: Applying machine-learning to multiple, wearable-derived features reveals that different measures of gait and mobility are associated with and discriminate distinct stages of PD. These disparate feature sets can augment the objective monitoring of disease progression and may be useful for cohort selection and power analyses in clinical trials of PD. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Estudios Transversales , Marcha , Humanos , Aprendizaje Automático , Enfermedad de Parkinson/diagnóstico , Equilibrio Postural , Estudios de Tiempo y Movimiento , Caminata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...