Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 32960, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27608812

RESUMEN

HMGB4 is a new member in the family of HMGB proteins that has been characterized in sperm cells, but little is known about its functions in somatic cells. Here we show that HMGB4 and the highly similar rat Transition Protein 4 (HMGB4L1) are expressed in neuronal cells. Both proteins had slow mobility in nucleus of living NIH-3T3 cells. They interacted with histones and their differential expression in transformed cells of the nervous system altered the post-translational modification statuses of histones in vitro. Overexpression of HMGB4 in HEK 293T cells made cells more susceptible to cell death induced by topoisomerase inhibitors in an oncology drug screening array and altered variant composition of histone H3. HMGB4 regulated over 800 genes in HEK 293T cells with a p-value ≤0.013 (n = 3) in a microarray analysis and displayed strongest association with adhesion and histone H2A -processes. In neuronal and transformed cells HMGB4 regulated the expression of an oligodendrocyte marker gene PPP1R14a and other neuronal differentiation marker genes. In conclusion, our data suggests that HMGB4 is a factor that regulates chromatin and expression of neuronal differentiation markers.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica , Proteínas HMGB/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Neurogénesis , Neuronas/fisiología , Animales , Línea Celular , Perfilación de la Expresión Génica , Humanos , Ratones , Análisis por Micromatrices , Ratas
2.
Mol Cell Neurosci ; 25(3): 444-52, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15033172

RESUMEN

Basic fibroblast growth factor (FGF-2) is involved in the development, maintenance, and survival of the nervous system. To study the physiological role of endogenous FGF-2 during peripheral nerve regeneration, we analyzed sciatic nerves of FGF-2-deleted mice by using morphometric, morphological, and immunocytochemical methods. Quantification of number and size of myelinated axons in intact sciatic nerves revealed no difference between wild-type and FGF-2 knock-out (ko) animals. One week after nerve crush, FGF-2 ko mice showed about five times more regenerated myelinated axons with increased myelin and axon diameter in comparison to wild-types close to the injury site. In addition, quantitative distribution of macrophages and collapsed myelin profiles suggested faster Wallerian degeneration in FGF-2-deleted mice close to the lesion site. Our results suggest that endogenous FGF-2 is crucially involved in the early phase of peripheral nerve regeneration possibly by regulation of Schwann cell differentiation.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/deficiencia , Nervios Periféricos/metabolismo , Neuropatía Ciática/metabolismo , Animales , Recuento de Células/métodos , Femenino , Factor 2 de Crecimiento de Fibroblastos/genética , Ratones , Ratones Noqueados , Nervios Periféricos/ultraestructura , Neuropatía Ciática/genética
3.
Mol Cell Neurosci ; 25(1): 21-9, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14962737

RESUMEN

Fibroblast growth factor receptor (FGFR) signaling is crucial for neural development and regeneration. Here we investigated the L5 spinal ganglion and the sciatic nerve of intact Fgfr3-deficient mice after nerve injury. Quantification of sensory neurons in the L5 spinal ganglion revealed no significant differences between wild-type and Fgfr3-deficient mice. Seven days after nerve lesion, the normally occurring neuron loss in wild-type mice was not found in Fgfr3-deficient animals, suggesting that FGFR3 signaling is involved in the cell death process. Morphometric analysis of the sciatic nerve showed similar numbers of myelinated axons, but the axonal and myelin diameter was significantly smaller in Fgfr3-deficient mice compared to the wild types. Evaluation of regenerating myelinated axons of the sciatic nerve revealed no differences between both mouse strains 7 days after crush injury. Our results suggest that FGFR3 signaling seems to be involved in processes of damage-induced neuron death and axonal development.


Asunto(s)
Degeneración Nerviosa/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos , Nervios Periféricos/metabolismo , Proteínas Tirosina Quinasas , Receptores de Factores de Crecimiento de Fibroblastos/fisiología , Neuropatía Ciática/metabolismo , Animales , Muerte Celular/fisiología , Desnervación , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Ganglios Espinales/fisiopatología , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Vértebras Lumbares/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/patología , Fibras Nerviosas Mielínicas/ultraestructura , Neuronas Aferentes/metabolismo , Neuronas Aferentes/patología , Neuronas Aferentes/ultraestructura , Nervios Periféricos/fisiopatología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos/deficiencia , Receptores de Factores de Crecimiento de Fibroblastos/genética , Nervio Ciático/metabolismo , Nervio Ciático/patología , Nervio Ciático/fisiopatología , Neuropatía Ciática/patología , Neuropatía Ciática/fisiopatología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA