Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(17): 5121-5141, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35678108

RESUMEN

Inhibitors are widely considered an efficient tool for reducing nitrogen (N) loss and improving N use efficiency, but their effectiveness is highly variable across agroecosystems. In this study, we synthesized 182 studies (222 sites) worldwide to evaluate the impacts of inhibitors (urease inhibitors [UI], nitrification inhibitors [NI] and combined inhibitors) on crop yields and gaseous N loss (ammonia [NH3 ] and nitrous oxide [N2 O] emissions) and explored their responses to different management and environmental factors including inhibitor application timing, fertilization regime, cropping system, water management, soil properties and climatic conditions using subgroup meta-analysis, meta-regression and multivariate analyses. The UI were most effective in enhancing crop yields (by 5%) and reducing NH3 volatilization (by 51%), whereas NI were most effective at reducing N2 O emissions (by 49%). The application of UI mitigates NH3 loss and increases crop yields especially in high NH3 -N loss scenarios, whereas NI application would minimize the net N2 O emissions and the resultant environmental impacts especially in low NH3 -N loss scenarios. Alternatively, the combined application of UI and NI enables producers to balance crop production and environmental conservation goals without pollution tradeoffs. The inhibitor efficacy for decreasing gaseous N loss was dependent upon soil and climatic conditions and management practices. Notably, both meta-regression and multivariate analyses suggest that inhibitors provide a greater opportunity for reducing fertilizer N inputs in high-N-surplus systems and presumably favor crop yield enhancement under soil N deficiency situations. The pursuit of an improved understanding of the interactions between plant-soil-climate-management systems and different types of inhibitors should continue to optimize the effectiveness of inhibitors for reducing environmental losses while increasing productivity.


Asunto(s)
Óxido Nitroso , Suelo , Agricultura , Amoníaco/análisis , Fertilizantes/análisis , Nitrógeno/análisis , Óxido Nitroso/análisis
2.
J Environ Manage ; 290: 112640, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33887638

RESUMEN

It is currently uncertain whether process-based models are capable of assessing crop yield and nitrogen (N) losses while helping to investigate best management practices from vegetable cropping systems. The objectives of this study were to (1) calibrate and evaluate the Denitrification-Decomposition (DNDC) model in simulating crop growth and nitrate leaching in a typical field radish system; (2) optimize management practices to improve radish yield and mitigate nitrate leaching under 20-year climate variability. A five-season in-situ field experiment of spring and autumn radish in northern China was established in the autumn of 2017 and measurements of radish yield, N uptake, soil temperature, soil moisture, drainage, and nitrate leaching were obtained under different N usage. DNDC overall demonstrated "good" to "excellent" performance in simulating radish yield, total biomass, N uptake, and soil temperature across all treatments (6.4% ≤ normalized root mean square error (nRMSE) ≤ 15.5%; 0.12 ≤ Nash-Sutcliffe efficiency (NSE) ≤ 0.88; 0.80 ≤ index of agreement (d) ≤ 0.97). DNDC generally exhibited "fair" performance in estimating soil moisture and drainage (10.9% ≤ nRMSE ≤ 27.2%; -0.18 ≤ NSE ≤ 0.37; 0.69 ≤ d ≤ 0.82) and "good" performance when predicting nitrate leaching (12.4% ≤ nRMSE ≤ 26.7%; -0.59 ≤ NSE ≤ 0.51; 0.68 ≤ d ≤ 0.90). Sensitivity analyses demonstrated that optimized management practices (planting dates, irrigation amount, fertilization rate and timing) could substantially reduce N usage by 40%-50%, irrigation amount by 33%-50%, and nitrate leaching by 86%-95% compared to farmers' practice in radish planting system. This study indicated that a modelling method is helpful for evaluating the biogeochemical effects of management alternatives and identifying optimal management practices in radish production systems of China.


Asunto(s)
Nitratos , Raphanus , Agricultura , China , Fertilizantes/análisis , Nitratos/análisis , Nitrógeno/análisis , Suelo
3.
Glob Chang Biol ; 27(4): 904-928, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33159712

RESUMEN

Simulation models represent soil organic carbon (SOC) dynamics in global carbon (C) cycle scenarios to support climate-change studies. It is imperative to increase confidence in long-term predictions of SOC dynamics by reducing the uncertainty in model estimates. We evaluated SOC simulated from an ensemble of 26 process-based C models by comparing simulations to experimental data from seven long-term bare-fallow (vegetation-free) plots at six sites: Denmark (two sites), France, Russia, Sweden and the United Kingdom. The decay of SOC in these plots has been monitored for decades since the last inputs of plant material, providing the opportunity to test decomposition without the continuous input of new organic material. The models were run independently over multi-year simulation periods (from 28 to 80 years) in a blind test with no calibration (Bln) and with the following three calibration scenarios, each providing different levels of information and/or allowing different levels of model fitting: (a) calibrating decomposition parameters separately at each experimental site (Spe); (b) using a generic, knowledge-based, parameterization applicable in the Central European region (Gen); and (c) using a combination of both (a) and (b) strategies (Mix). We addressed uncertainties from different modelling approaches with or without spin-up initialization of SOC. Changes in the multi-model median (MMM) of SOC were used as descriptors of the ensemble performance. On average across sites, Gen proved adequate in describing changes in SOC, with MMM equal to average SOC (and standard deviation) of 39.2 (±15.5) Mg C/ha compared to the observed mean of 36.0 (±19.7) Mg C/ha (last observed year), indicating sufficiently reliable SOC estimates. Moving to Mix (37.5 ± 16.7 Mg C/ha) and Spe (36.8 ± 19.8 Mg C/ha) provided only marginal gains in accuracy, but modellers would need to apply more knowledge and a greater calibration effort than in Gen, thereby limiting the wider applicability of models.


Asunto(s)
Carbono , Suelo , Agricultura , Carbono/análisis , Francia , Federación de Rusia , Suecia , Incertidumbre , Reino Unido
4.
Sci Total Environ ; 750: 142278, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33182183

RESUMEN

This study explores the variation of liquid manure temperature (Tm) and CH4 emissions associated with contrasting regional climates, inter-annual weather variation, and manure storage emptying. As a case-study, six regions across Canada were used, spanning 11°32' latitude and 58°30' longitude. Annual average air temperatures ranged from 3.9 °C (prairie climate) to 10.5 °C (maritime climate), with an overall average of 6.6 °C. A model predicted Tm over 30 years, using daily weather (1971-2000), and over one "normal" year (30-year average weather). Modelled Tm was then used in Manure-DNDC to model daily CH4 emissions. Two manure storage emptying scenarios were simulated: (i) early spring and autumn, or (ii) late spring and autumn. Regional differences were evident as average Tm ranged from 8.9 °C to 14.6 °C across the six locations. Early removal of stored manure led to warmer Tm in all regions, and the most warming occurred in colder regions. Regional climate had a large effect on CH4 emissions (e.g. 1.8× greater in the pacific maritime and great lakes regions than the prairie region). Inter-annual weather variability led to substantial variation in inter-annual CH4 emissions, with coefficient of variation being as high as 20%. The large inter-annual range suggests that field measurements of CH4 emissions need to compare the weather during measurements to historical normals. Early manure storage emptying reduced CH4 emissions (vs late removal) in some regions but had little effect or the opposite effect in other regions. Overall, the results from this modelling study suggest: i) Tm differs substantially from air temperature at all locations, ii) accurate estimates of manure storage CH4 emissions require region-specific calculations using Tm (e.g. in emission inventories), iii) field measurements of CH4 emissions need to consider weather conditions relative to climate normal, and iv) emission mitigation practices will require region-specific measurements to determine impacts.

5.
Sci Total Environ ; 722: 137851, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32182514

RESUMEN

Nitrogen (N) use in corn production is an important driver of nitrous oxide (N2O) emissions and 4R (Right source, Right rate, Right time and Right place) fertilizer practices have been proposed to mitigate emissions. However, combined 4R practices have not been assessed for their potential to reduce N2O emissions at the provincial-scale while also considering trade-offs with other N losses such as leaching or ammonia (NH3) volatilization. The objectives of this study were to develop, validate, and apply a Denitrification-Decomposition model framework at 270 distinct soil-climate regions in Ontario to simulate corn yield and N2O emissions across eleven fertilizer management scenarios during 1986-2015. The results show that broadcasting fertilizer at the surface without incorporation had the highest environmental N loss which was primarily caused by NH3 volatilization. When injected at planting or at sidedress, the NH3 loss was reduced considerably. However, because more N was left in the soil, injection and sidedressing induced more losses by nitrate leaching and N2O emissions. Reduction of N rate as proposed by the DNDC model did not affect crop yield but decreased leaching and N2O emissions. Addition of inhibitors promoted a further reduction in N2O emission (11-16%) although lesser than the reduction in N rate. Overall, our results emphasize that N rate adjustment following improvements in placement, use of inhibitors, and application timings can mitigate N2O emissions by 42-57% and result in 3-4% greater yields compared to baseline scenario in Ontario corn production.


Asunto(s)
Zea mays , Agricultura , Fertilizantes , Nitrógeno , Óxido Nitroso , Ontario , Suelo
6.
Sci Total Environ ; 573: 356-365, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27572528

RESUMEN

Effective management of nitrogen (N) fertilizer application by farmers provides great potential for reducing emissions of the potent greenhouse gas nitrous oxide (N2O). However, such potential is rarely achieved because our understanding of what practices (or combination of practices) lead to N2O reductions without compromising crop yields remains far from complete. Using scenario analysis with the process-based model DNDC, this study explored the effects of nine fertilizer practices on N2O emissions and crop yields from two corn production systems in Canada. The scenarios differed in: timing of fertilizer application, fertilizer rate, number of applications, fertilizer type, method of application and use of nitrification/urease inhibitors. Statistical analysis showed that during the initial calibration and validation stages the simulated results had no significant total error or bias compared to measured values, yet grain yield estimations warrant further model improvement. Sidedress fertilizer applications reduced yield-scaled N2O emissions by c. 60% compared to fall fertilization. Nitrification inhibitors further reduced yield-scaled N2O emissions by c. 10%; urease inhibitors had no effect on either N2O emissions or crop productivity. The combined adoption of split fertilizer application with inhibitors at a rate 10% lower than the conventional application rate (i.e. 150kgNha-1) was successful, but the benefits were lower than those achieved with single fertilization at sidedress. Our study provides a comprehensive assessment of fertilizer management practices that enables policy development regarding N2O mitigation from agricultural soils in Canada.

7.
Sci Total Environ ; 490: 921-33, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24911772

RESUMEN

Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha(-1) decreased on average the emissions of N2O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact.


Asunto(s)
Agricultura/métodos , Contaminación del Aire/prevención & control , Cambio Climático , Fertilizantes/estadística & datos numéricos , Calentamiento Global , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Productos Agrícolas/crecimiento & desarrollo , Fertilizantes/análisis , Efecto Invernadero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...