Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
bioRxiv ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39005376

RESUMEN

Immune checkpoint inhibitors (ICIs) that target programmed cell death 1 (PD-1) have revolutionized cancer treatment by enabling the restoration of suppressed T-cell cytotoxic responses. However, resistance to single-agent ICIs limits their clinical utility. Combinatorial strategies enhance their antitumor effects, but may also enhance the risk of immune related adverse effects of ICIs. Prostaglandin (PG) E2, formed by the sequential action of the cyclooxygenase (COX) and microsomal PGE synthase (mPGES-1) enzymes, acting via its E prostanoid (EP) receptors, EPr2 and EPr4, promotes lymphocyte exhaustion, revealing an additional target for ICIs. Thus, COX inhibitors and EPr4 antagonists are currently being combined with ICIs potentially to enhance antitumor efficacy in clinical trials. However, given the cardiovascular (CV) toxicity of COX inhibitors, such combinations may increase the risk particularly of CV AEs. Here, we compared the impact of distinct approaches to disruption of the PGE2 synthesis /response pathway - global or myeloid cell specific depletion of mPges-1 or global depletion of Epr4 - on the accelerated atherogenesis in Pd-1 deficient hyperlipidemic (Ldlr-/-) mice. All strategies restrained the atherogenesis. While depletion of mPGES-1 suppresses PGE2 biosynthesis, reflected by its major urinary metabolite, PGE2 biosynthesis was increased in mice lacking EPr4, consistent with enhanced expression of aortic Cox-1 and mPges-1. Deletions of mPges-1 and Epr4 differed in their effects on immune cell populations in atherosclerotic plaques; the former reduced neutrophil infiltration, while the latter restrained macrophages and increased the infiltration of T-cells. Consistent with these findings, chemotaxis by bone-marrow derived macrophages from Epr4-/- mice was impaired. Epr4 depletion also resulted in extramedullary lymphoid hematopoiesis and inhibition of lipoprotein lipase activity (LPL) with coincident spelenomegaly, leukocytosis and dyslipidemia. Targeting either mPGES-1 or EPr4 may restrain lymphocyte exhaustion while mitigating CV irAEs consequent to PD-1 blockade.

2.
ACS Nano ; 18(29): 19110-19123, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38980975

RESUMEN

We demonstrate nearly a microsecond of spin coherence in Er3+ ions doped in cerium dioxide nanocrystal hosts, despite a large gyromagnetic ratio and nanometric proximity of the spin defect to the nanocrystal surface. The long spin coherence is enabled by reducing the dopant density below the instantaneous diffusion limit in a nuclear spin-free host material, reaching the limit of a single erbium spin defect per nanocrystal. We observe a large Orbach energy in a highly symmetric cubic site, further protecting the coherence in a qubit that would otherwise rapidly decohere. Spatially correlated electron spectroscopy measurements reveal the presence of Ce3+ at the nanocrystal surface, which likely acts as extraneous paramagnetic spin noise. Even with these factors, defect-embedded nanocrystal hosts show tremendous promise for quantum sensing and quantum communication applications, with multiple avenues, including core-shell fabrication, redox tuning of oxygen vacancies, and organic surfactant modification, available to further enhance their spin coherence and functionality in the future.

3.
medRxiv ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38854091

RESUMEN

Background: Non-steroidal anti-inflammatory drugs (NSAIDs) increase the risk of adverse cardiovascular events via suppression of cyclooxygenase (COX)-2-derived prostacyclin (PGI2) formation in heart, vasculature, and kidney. The Prospective Randomized Evaluation of Celecoxib Integrated Safety versus Ibuprofen Or Naproxen (PRECISION) trial and other large clinical studies compared the cardiovascular risk of traditional NSAIDs (i.e. naproxen), which inhibit both COX isozymes, with NSAIDs selective for COX-2 (i.e. celecoxib). However, whether pharmacologically equipotent doses were used - that is, whether a similar degree of COX-2 inhibition was achieved - was not considered. We compared drug target inhibition and blood pressure response to celecoxib at the dose used by most patients in PRECISION with the lowest recommended naproxen dose for osteoarthritis, which is lower than the dose used in PRECISION. Methods: Sixteen healthy participants (19-61 years) were treated with celecoxib (100 mg every 12h), naproxen (250 mg every 12h), or placebo administered twice daily for seven days in a double-blind, crossover design randomized by order. On Day 7 when drug levels had reached steady state, the degree of COX inhibition was assessed ex vivo and in vivo. Ambulatory blood pressure was measured throughout the final 12h dosing interval. Results: Both NSAIDs inhibited COX-2 activity relative to placebo, but naproxen inhibited COX-2 activity to a greater degree (62.9±21.7%) than celecoxib (35.7±25.2%; p<0.05). Similarly, naproxen treatment inhibited PGI2 formation in vivo (48.0±24.9%) to a greater degree than celecoxib (26.7±24.6%; p<0.05). Naproxen significantly increased blood pressure compared to celecoxib (differences in least-square means of mean arterial pressure: 2.5 mm Hg (95% CI: 1.5, 3.5); systolic blood pressure: 4.0 mm Hg (95% CI: 2.9, 5.1); diastolic blood pressure: 1.8 mm Hg (95% CI: 0.8, 2.8); p<0.05 for all). The difference in systolic blood pressure relative to placebo was associated with the degree of COX-2 inhibition (p<0.05). Conclusions: Celecoxib 200 mg/day inhibited COX-2 activity to a lesser degree than naproxen 500 mg/day, resulting in a less pronounced blood pressure increase. While the PRECISION trial concluded the non-inferiority of celecoxib regarding cardiovascular risk, this is based on a comparison of doses that are not equipotent.ClinicalTrials.gov identifier: NCT02502006 (https://clinicaltrials.gov/study/NCT02502006).

4.
Arterioscler Thromb Vasc Biol ; 44(6): 1393-1406, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38660804

RESUMEN

BACKGROUND: Low-dose aspirin is widely used for the secondary prevention of cardiovascular disease. The beneficial effects of low-dose aspirin are attributable to its inhibition of platelet Cox (cyclooxygenase)-1-derived thromboxane A2. Until recently, the use of the Pf4 (platelet factor 4) Cre has been the only genetic approach to generating megakaryocyte/platelet ablation of Cox-1 in mice. However, Pf4-ΔCre displays ectopic expression outside the megakaryocyte/platelet lineage, especially during inflammation. The use of the Gp1ba (glycoprotein 1bα) Cre promises a more specific, targeted approach. METHODS: To evaluate the role of Cox-1 in platelets, we crossed Pf4-ΔCre or Gp1ba-ΔCre mice with Cox-1flox/flox mice to generate platelet Cox-1-/- mice on normolipidemic and hyperlipidemic (Ldlr-/-; low-density lipoprotein receptor) backgrounds. RESULTS: Ex vivo platelet aggregation induced by arachidonic acid or adenosine diphosphate in platelet-rich plasma was inhibited to a similar extent in Pf4-ΔCre Cox-1-/-/Ldlr-/- and Gp1ba-ΔCre Cox-1-/-/Ldlr-/- mice. In a mouse model of tail injury, Pf4-ΔCre-mediated and Gp1ba-ΔCre-mediated deletions of Cox-1 were similarly efficient in suppressing platelet prostanoid biosynthesis. Experimental thrombogenesis and attendant blood loss were similar in both models. However, the impact on atherogenesis was divergent, being accelerated in the Pf4-ΔCre mice while restrained in the Gp1ba-ΔCres. In the former, accelerated atherogenesis was associated with greater suppression of PGI2 biosynthesis, a reduction in the lipopolysaccharide-evoked capacity to produce PGE2 (prostaglandin E) and PGD2 (prostanglandin D), activation of the inflammasome, elevated plasma levels of IL-1ß (interleukin), reduced plasma levels of HDL-C (high-density lipoprotein receptor-cholesterol), and a reduction in the capacity for reverse cholesterol transport. By contrast, in the latter, plasma HDL-C and α-tocopherol were elevated, and MIP-1α (macrophage inflammatory protein-1α) and MCP-1 (monocyte chemoattractant protein 1) were reduced. CONCLUSIONS: Both approaches to Cox-1 deletion similarly restrain thrombogenesis, but a differential impact on Cox-1-dependent prostanoid formation by the vasculature may contribute to an inflammatory phenotype and accelerated atherogenesis in Pf4-ΔCre mice.


Asunto(s)
Plaquetas , Ciclooxigenasa 1 , Modelos Animales de Enfermedad , Integrasas , Ratones Endogámicos C57BL , Ratones Noqueados , Agregación Plaquetaria , Factor Plaquetario 4 , Receptores de LDL , Animales , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Plaquetas/enzimología , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 1/genética , Ciclooxigenasa 1/deficiencia , Agregación Plaquetaria/efectos de los fármacos , Factor Plaquetario 4/genética , Factor Plaquetario 4/metabolismo , Integrasas/genética , Receptores de LDL/genética , Receptores de LDL/deficiencia , Masculino , Ratones , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/enzimología , Aterosclerosis/prevención & control , Aterosclerosis/sangre , Hiperlipidemias/sangre , Hiperlipidemias/genética , Hiperlipidemias/enzimología , Fenotipo , Proteínas de la Membrana , Complejo GPIb-IX de Glicoproteína Plaquetaria
5.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38605641

RESUMEN

Simulation of RNA-seq reads is critical in the assessment, comparison, benchmarking and development of bioinformatics tools. Yet the field of RNA-seq simulators has progressed little in the last decade. To address this need we have developed BEERS2, which combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline. BEERS2 takes input transcripts (typically fully length messenger RNA transcripts with polyA tails) from either customizable input or from CAMPAREE simulated RNA samples. It produces realistic reads of these transcripts as FASTQ, SAM or BAM formats with the SAM or BAM formats containing the true alignment to the reference genome. It also produces true transcript-level quantification values. BEERS2 combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline and is designed to include the effects of polyA selection and RiboZero for ribosomal depletion, hexamer priming sequence biases, GC-content biases in polymerase chain reaction (PCR) amplification, barcode read errors and errors during PCR amplification. These characteristics combine to make BEERS2 the most complete simulation of RNA-seq to date. Finally, we demonstrate the use of BEERS2 by measuring the effect of several settings on the popular Salmon pseudoalignment algorithm.


Asunto(s)
Genoma , ARN , RNA-Seq , Análisis de Secuencia de ARN , Simulación por Computador , ARN/genética , Secuenciación de Nucleótidos de Alto Rendimiento
7.
ACS Nano ; 18(14): 9929-9941, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38533847

RESUMEN

The use of trivalent erbium (Er3+), typically embedded as an atomic defect in the solid-state, has widespread adoption as a dopant in telecommunication devices and shows promise as a spin-based quantum memory for quantum communication. In particular, its natural telecom C-band optical transition and spin-photon interface make it an ideal candidate for integration into existing optical fiber networks without the need for quantum frequency conversion. However, successful scaling requires a host material with few intrinsic nuclear spins, compatibility with semiconductor foundry processes, and straightforward integration with silicon photonics. Here, we present Er-doped titanium dioxide (TiO2) thin film growth on silicon substrates using a foundry-scalable atomic layer deposition process with a wide range of doping controls over the Er concentration. Even though the as-grown films are amorphous after oxygen annealing, they exhibit relatively large crystalline grains, and the embedded Er ions exhibit the characteristic optical emission spectrum from anatase TiO2. Critically, this growth and annealing process maintains the low surface roughness required for nanophotonic integration. Finally, we interface Er ensembles with high quality factor Si nanophotonic cavities via evanescent coupling and demonstrate a large Purcell enhancement (≈300) of their optical lifetime. Our findings demonstrate a low-temperature, nondestructive, and substrate-independent process for integrating Er-doped materials with silicon photonics. At high doping densities this platform can enable integrated photonic components such as on-chip amplifiers and lasers, while dilute concentrations can realize single ion quantum memories.

8.
Nat Rev Genet ; 25(5): 326-339, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38216661

RESUMEN

Technological advances enabling massively parallel measurement of biological features - such as microarrays, high-throughput sequencing and mass spectrometry - have ushered in the omics era, now in its third decade. The resulting complex landscape of analytical methods has naturally fostered the growth of an omics benchmarking industry. Benchmarking refers to the process of objectively comparing and evaluating the performance of different computational or analytical techniques when processing and analysing large-scale biological data sets, such as transcriptomics, proteomics and metabolomics. With thousands of omics benchmarking studies published over the past 25 years, the field has matured to the point where the foundations of benchmarking have been established and well described. However, generating meaningful benchmarking data and properly evaluating performance in this complex domain remains challenging. In this Review, we highlight some common oversights and pitfalls in omics benchmarking. We also establish a methodology to bring the issues that can be addressed into focus and to be transparent about those that cannot: this takes the form of a spreadsheet template of guidelines for comprehensive reporting, intended to accompany publications. In addition, a survey of recent developments in benchmarking is provided as well as specific guidance for commonly encountered difficulties.


Asunto(s)
Benchmarking , Proteómica , Proteómica/métodos , Metabolómica/métodos , Perfilación de la Expresión Génica , Espectrometría de Masas
9.
bioRxiv ; 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37808824

RESUMEN

Aging is associated with a number of physiologic changes including perturbed circadian rhythms; however, mechanisms by which rhythms are altered remain unknown. To test the idea that circulating factors mediate age-dependent changes in peripheral rhythms, we compared the ability of human serum from young and old individuals to synchronize circadian rhythms in culture. We collected blood from apparently healthy young (age 25-30) and old (age 70-76) individuals and used the serum to synchronize cultured fibroblasts. We found that young and old sera are equally competent at driving robust ~24h oscillations of a luciferase reporter driven by clock gene promoter. However, cyclic gene expression is affected, such that young and old sera drive cycling of different genes. While genes involved in the cell cycle and transcription/translation remain rhythmic in both conditions, genes identified by STRING and IPA analyses as associated with oxidative phosphorylation and Alzheimer's Disease lose rhythmicity in the aged condition. Also, the expression of cycling genes associated with cholesterol biosynthesis increases in the cells entrained with old serum. We did not observe a global difference in the distribution of phase between groups, but find that peak expression of several clock controlled genes (PER3, NR1D1, NR1D2, CRY1, CRY2, and TEF) lags in the cells synchronized with old serum. Taken together, these findings demonstrate that age-dependent blood-borne factors affect peripheral circadian rhythms in cells and have the potential to impact health and disease via maintaining or disrupting rhythms respectively.

10.
Nat Commun ; 14(1): 5172, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620332

RESUMEN

Many chronic disease symptomatologies involve desynchronized sleep-wake cycles, indicative of disrupted biorhythms. This can be interrogated using body temperature rhythms, which have circadian as well as sleep-wake behavior/environmental evoked components. Here, we investigated the association of wrist temperature amplitudes with a future onset of disease in the UK Biobank one year after actigraphy. Among 425 disease conditions (range n = 200-6728) compared to controls (range n = 62,107-91,134), a total of 73 (17%) disease phenotypes were significantly associated with decreased amplitudes of wrist temperature (Benjamini-Hochberg FDR q < 0.05) and 26 (6.1%) PheCODEs passed a more stringent significance level (Bonferroni-correction α < 0.05). A two-standard deviation (1.8° Celsius) lower wrist temperature amplitude corresponded to hazard ratios of 1.91 (1.58-2.31 95% CI) for NAFLD, 1.69 (1.53-1.88) for type 2 diabetes, 1.25 (1.14-1.37) for renal failure, 1.23 (1.17-1.3) for hypertension, and 1.22 (1.11-1.33) for pneumonia (phenome-wide atlas available at http://bioinf.itmat.upenn.edu/biorhythm_atlas/ ). This work suggests peripheral thermoregulation as a digital biomarker.


Asunto(s)
Bancos de Muestras Biológicas , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/epidemiología , Temperatura , Muñeca , Ritmo Circadiano , Reino Unido/epidemiología
11.
JCI Insight ; 8(16)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37463053

RESUMEN

Optimal lung repair and regeneration are essential for recovery from viral infections, including influenza A virus (IAV). We have previously demonstrated that acute inflammation and mortality induced by IAV is under circadian control. However, it is not known whether the influence of the circadian clock persists beyond the acute outcomes. Here, we utilize the UK Biobank to demonstrate an association between poor circadian rhythms and morbidity from lower respiratory tract infections, including the need for hospitalization and mortality after discharge; this persists even after adjusting for common confounding factors. Furthermore, we use a combination of lung organoid assays, single-cell RNA sequencing, and IAV infection in different models of clock disruption to investigate the role of the circadian clock in lung repair and regeneration. We show that lung organoids have a functional circadian clock and the disruption of this clock impairs regenerative capacity. Finally, we find that the circadian clock acts through distinct pathways in mediating lung regeneration - in tracheal cells via the Wnt/ß-catenin pathway and through IL-1ß in alveolar epithelial cells. We speculate that adding a circadian dimension to the critical process of lung repair and regeneration will lead to novel therapies and improve outcomes.


Asunto(s)
Relojes Circadianos , Virus de la Influenza A , Pulmón/metabolismo , Células Epiteliales Alveolares , Ritmo Circadiano , Relojes Circadianos/genética , Virus de la Influenza A/fisiología , Regeneración
12.
J Biol Rhythms ; 38(6): 556-570, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37382061

RESUMEN

To assess the consistency of biological rhythms across studies, 57 public mouse liver tissue timeseries totaling 1096 RNA-seq samples were obtained and analyzed. Only the control groups of each study were included, to create comparable data. Technical factors in RNA-seq library preparation were the largest contributors to transcriptome-level differences, beyond biological or experiment-specific factors such as lighting conditions. Core clock genes were remarkably consistent in phase across all studies. Overlap of genes identified as rhythmic across studies was generally low, with no pair of studies having over 60% overlap. Distributions of phases of significant genes were remarkably inconsistent across studies, but the genes that consistently identified as rhythmic had acrophase clustering near ZT0 and ZT12. Despite the discrepancies between single-study analyses, cross-study analyses found substantial consistency. Running compareRhythms on each pair of studies identified a median of only 11% of the identified rhythmic genes as rhythmic in only 1 of the 2 studies. Data were integrated across studies in a joint and individual variance estimate (JIVE) analysis, which showed that the top 2 components of joint within-study variation are determined by time of day. A shape-invariant model with random effects was fit to the genes to identify the underlying shape of the rhythms, consistent across all studies, including identifying 72 genes with consistently multiple peaks.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Ratones , Ritmo Circadiano/genética , Relojes Circadianos/genética , Transcriptoma , Hígado
13.
Sci Transl Med ; 15(696): eabo2022, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37196066

RESUMEN

Longitudinal studies associate shiftwork with cardiometabolic disorders but do not establish causation or elucidate mechanisms of disease. We developed a mouse model based on shiftwork schedules to study circadian misalignment in both sexes. Behavioral and transcriptional rhythmicity were preserved in female mice despite exposure to misalignment. Females were protected from the cardiometabolic impact of circadian misalignment on a high-fat diet seen in males. The liver transcriptome and proteome revealed discordant pathway perturbations between the sexes. Tissue-level changes were accompanied by gut microbiome dysbiosis only in male mice, biasing toward increased potential for diabetogenic branched chain amino acid production. Antibiotic ablation of the gut microbiota diminished the impact of misalignment. In the United Kingdom Biobank, females showed stronger circadian rhythmicity in activity and a lower incidence of metabolic syndrome than males among job-matched shiftworkers. Thus, we show that female mice are more resilient than males to chronic circadian misalignment and that these differences are conserved in humans.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Humanos , Masculino , Femenino , Animales , Ratones , Dieta Alta en Grasa , Caracteres Sexuales , Ritmo Circadiano
14.
bioRxiv ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37162982

RESUMEN

Simulation of RNA-seq reads is critical in the assessment, comparison, benchmarking, and development of bioinformatics tools. Yet the field of RNA-seq simulators has progressed little in the last decade. To address this need we have developed BEERS2, which combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline. BEERS2 takes input transcripts (typically fully-length mRNA transcripts with polyA tails) from either customizable input or from CAMPAREE simulated RNA samples. It produces realistic reads of these transcripts as FASTQ, SAM, or BAM formats with the SAM or BAM formats containing the true alignment to the reference genome. It also produces true transcript-level quantification values. BEERS2 combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline and is designed to include the effects of polyA selection and RiboZero for ribosomal depletion, hexamer priming sequence biases, GC-content biases in PCR amplification, barcode read errors, and errors during PCR amplification. These characteristics combine to make BEERS2 the most complete simulation of RNA-seq to date. Finally, we demonstrate the use of BEERS2 by measuring the effect of several settings on the popular Salmon pseudoalignment algorithm.

15.
J Pharmacol Exp Ther ; 386(2): 198-204, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37105582

RESUMEN

Evidence is scarce to guide the use of nonsteroidal anti-inflammatory drugs (NSAIDs) to mitigate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine-related adverse effects, given the possibility of blunting the desired immune response. In this pilot study, we deeply phenotyped a small number of volunteers who did or did not take NSAIDs concomitant with SARS-CoV-2 immunizations to seek initial information on the immune response. A SARS-CoV-2 vaccine-specific receptor binding domain (RBD) IgG antibody response and efficacy in the evoked neutralization titers were evident irrespective of concomitant NSAID consumption. Given the sample size, only a large and consistent signal of immunomodulation would have been detectable, and this was not apparent. However, the information gathered may inform the design of a definitive clinical trial. Here we report a series of divergent omics signals that invites additional hypotheses testing. SIGNIFICANCE STATEMENT: The impact of nonsteroidal anti-inflammatory drugs (NSAIDs) on the immune response elicited by repeat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunizations was profiled by immunophenotypic, proteomic, and metabolomic approaches in a clinical pilot study of small sample size. A SARS-CoV-2 vaccine-specific immune response was evident irrespective of concomitant NSAID consumption. The information gathered may inform the design of a definitive clinical trial.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Proyectos Piloto , Proteómica , Anticuerpos Antivirales , Inmunoglobulina G , Vacunación , Inmunidad , Antiinflamatorios
16.
Nat Commun ; 14(1): 1230, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869033

RESUMEN

The ubiquity of RNA-seq has led to many methods that use RNA-seq data to analyze variations in RNA splicing. However, available methods are not well suited for handling heterogeneous and large datasets. Such datasets scale to thousands of samples across dozens of experimental conditions, exhibit increased variability compared to biological replicates, and involve thousands of unannotated splice variants resulting in increased transcriptome complexity. We describe here a suite of algorithms and tools implemented in the MAJIQ v2 package to address challenges in detection, quantification, and visualization of splicing variations from such datasets. Using both large scale synthetic data and GTEx v8 as benchmark datasets, we assess the advantages of MAJIQ v2 compared to existing methods. We then apply MAJIQ v2 package to analyze differential splicing across 2,335 samples from 13 brain subregions, demonstrating its ability to offer insights into brain subregion-specific splicing regulation.


Asunto(s)
Algoritmos , Empalme del ARN , RNA-Seq , Benchmarking , Encéfalo
17.
Res Sq ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36824952

RESUMEN

Many chronic disease symptomatologies involve desynchronized sleep-wake cycles, indicative of disrupted biorhythms. This can be interrogated using body temperature rhythms, which are well-established biomarkers for circadian clock function. Here, we investigated the association of wrist temperature amplitudes with a future onset of disease in the UK Biobank one year after actigraphy. Among 425 disease conditions (range n = 200-6,728) compared to controls (range n = 62,107 - 91,134), a total of 73 (36.5%) disease phenotypes were significantly associated with decreased amplitudes of wrist temperature (Benjamini-Hochberg FDR q < 0.05) and 26 (13%) PheCODEs passed a more stringent significance level (Bonferroni-correction α < 0.05). Here, for example, a two-standard deviation (1.8° Celsius) lower wrist temperature amplitude corresponded to hazard ratios of 1.91 (1.58-2.31 95% CI) for NAFLD, 1.69 (1.53-1.88) for type 2 diabetes, 1.25 (1.14-1.37) for renal failure, 1.23 (1.17-1.3) for hypertension, and 1.22 (1.11-1.33) for pneumonia. A comprehensive phenome-wide atlas of the identified mappings has been made available at http://bioinf.itmat.upenn.edu/biorhythm_atlas/. These findings strongly suggest peripheral thermoregulation as a digital biomarker.

18.
Genome Biol ; 24(1): 35, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829244

RESUMEN

BACKGROUND: Mapping of quantitative trait loci (QTL) associated with molecular phenotypes is a powerful approach for identifying the genes and molecular mechanisms underlying human traits and diseases, though most studies have focused on individuals of European descent. While important progress has been made to study a greater diversity of human populations, many groups remain unstudied, particularly among indigenous populations within Africa. To better understand the genetics of gene regulation in East Africans, we perform expression and splicing QTL mapping in whole blood from a cohort of 162 diverse Africans from Ethiopia and Tanzania. We assess replication of these QTLs in cohorts of predominantly European ancestry and identify candidate genes under selection in human populations. RESULTS: We find the gene regulatory architecture of African and non-African populations is broadly shared, though there is a considerable amount of variation at individual loci across populations. Comparing our analyses to an equivalently sized cohort of European Americans, we find that QTL mapping in Africans improves the detection of expression QTLs and fine-mapping of causal variation. Integrating our QTL scans with signatures of natural selection, we find several genes related to immunity and metabolism that are highly differentiated between Africans and non-Africans, as well as a gene associated with pigmentation. CONCLUSION: Extending QTL mapping studies beyond European ancestry, particularly to diverse indigenous populations, is vital for a complete understanding of the genetic architecture of human traits and can reveal novel functional variation underlying human traits and disease.


Asunto(s)
Pueblo de África Oriental , Sitios de Carácter Cuantitativo , Humanos , Mapeo Cromosómico , Expresión Génica , Tanzanía , Variación Genética
19.
Nano Lett ; 22(16): 6530-6536, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35939762

RESUMEN

Isolated solid-state atomic defects with telecom optical transitions are ideal quantum photon emitters and spin qubits for applications in long-distance quantum communication networks. Prototypical telecom defects, such as erbium, suffer from poor photon emission rates, requiring photonic enhancement using resonant optical cavities. Moreover, many of the traditional hosts for erbium ions are not amenable to direct incorporation with existing integrated photonics platforms, limiting scalable fabrication of qubit-based devices. Here, we present a scalable approach toward CMOS-compatible telecom qubits by using erbium-doped titanium dioxide thin films grown atop silicon-on-insulator substrates. From this heterostructure, we have fabricated one-dimensional photonic crystal cavities demonstrating quality factors in excess of 5 × 104 and corresponding Purcell-enhanced optical emission rates of the erbium ensembles in excess of 200. This easily fabricated materials platform represents an important step toward realizing telecom quantum memories in a scalable qubit architecture compatible with mature silicon technologies.

20.
Digit Health ; 8: 20552076221107903, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35746950

RESUMEN

Patients with chronic kidney disease are at risk of developing cardiovascular disease. To facilitate out-of-clinic evaluation, we piloted wearable device-based analysis of heart rate variability and behavioral readouts in patients with chronic kidney disease from the Chronic Renal Insufficiency Cohort and controls (n = 49). Time-specific partitioning of heart rate variability readouts confirm higher parasympathetic nervous activity during the night (mean RR at night 14.4 ± 1.9 ms vs. 12.8 ± 2.1 ms during active hours; n = 47, analysis of variance (ANOVA) q = 0.001). The α2 long-term fluctuations in the detrended fluctuation analysis, a parameter predictive of cardiovascular mortality, significantly differentiated between diabetic and nondiabetic patients (prominent at night with 0.58 ± 0.2 vs. 0.45 ± 0.12, respectively, adj. p = 0.004). Both diabetic and nondiabetic chronic kidney disease patients showed loss of rhythmic organization compared to controls, with diabetic chronic kidney disease patients exhibiting deconsolidation of peak phases between their activity and standard deviation of interbeat intervals rhythms (mean phase difference chronic kidney disease 8.3 h, chronic kidney disease/type 2 diabetes mellitus 4 h, controls 6.8 h). This work provides a roadmap toward deriving actionable clinical insights from the data collected by wearable devices outside of highly controlled clinical environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA