Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Biophys J ; 122(23): 4567-4581, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37924208

RESUMEN

Solution scattering techniques, such as small- and wide-angle X-ray scattering (SWAXS), provide valuable insights into the structure and dynamics of biological macromolecules in solution. In this study, we present an approach to accurately predict solution X-ray scattering profiles at wide angles from atomic models by generating high-resolution electron density maps. Our method accounts for the excluded volume of bulk solvent by calculating unique adjusted atomic volumes directly from the atomic coordinates. This approach eliminates the need for one of the free fitting parameters commonly used in existing algorithms, resulting in improved accuracy of the calculated SWAXS profile. An implicit model of the hydration shell is generated that uses the form factor of water. Two parameters, namely the bulk solvent density and the mean hydration shell contrast, are adjusted to best fit the data. Results using eight publicly available SWAXS profiles show high-quality fits to the data. In each case, the optimized parameter values show small adjustments demonstrating that the default values are close to the true solution. Disabling parameter optimization produces significantly more accurate predicted scattering profiles compared to the leading software. The algorithm is computationally efficient, comparable to the leading software and up to 10 times faster for large molecules. The algorithm is encoded in a command line script called denss.pdb2mrc.py and is available open source as part of the DENSS v1.7.0 software package. In addition to improving the ability to compare atomic models to experimental SWAXS data, these developments pave the way for increasing the accuracy of modeling algorithms using SWAXS data and decreasing the risk of overfitting.


Asunto(s)
Electrones , Agua , Difracción de Rayos X , Dispersión del Ángulo Pequeño , Solventes/química , Agua/química
2.
Sci Adv ; 9(39): eadj3509, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37756398

RESUMEN

RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free-electron laser sources to reveal the formation and ready identification of angstrom-scale features in structured and unstructured RNAs. Previously unrecognized structural signatures of RNA secondary and tertiary structures are identified through wide-angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base-paired intermediate to assume a triple-helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. This method may help to rapidly characterize and identify structural elements in nucleic acids in both equilibrium and time-resolved experiments.


Asunto(s)
Ácidos Nucleicos , ARN , Electrones , Rayos Láser
3.
J Am Chem Soc ; 145(41): 22305-22309, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37695261

RESUMEN

Cytochrome c oxidase (CcO) is a large membrane-bound hemeprotein that catalyzes the reduction of dioxygen to water. Unlike classical dioxygen binding hemeproteins with a heme b group in their active sites, CcO has a unique binuclear center (BNC) composed of a copper atom (CuB) and a heme a3 iron, where O2 binds and is reduced to water. CO is a versatile O2 surrogate in ligand binding and escape reactions. Previous time-resolved spectroscopic studies of the CO complexes of bovine CcO (bCcO) revealed that photolyzing CO from the heme a3 iron leads to a metastable intermediate (CuB-CO), where CO is bound to CuB, before it escapes out of the BNC. Here, with a pump-probe based time-resolved serial femtosecond X-ray crystallography, we detected a geminate photoproduct of the bCcO-CO complex, where CO is dissociated from the heme a3 iron and moved to a temporary binding site midway between the CuB and the heme a3 iron, while the locations of the two metal centers and the conformation of Helix-X, housing the proximal histidine ligand of the heme a3 iron, remain in the CO complex state. This new structure, combined with other reported structures of bCcO, allows for a clearer definition of the ligand dissociation trajectory as well as the associated protein dynamics.


Asunto(s)
Cobre , Complejo IV de Transporte de Electrones , Bovinos , Animales , Complejo IV de Transporte de Electrones/química , Oxidación-Reducción , Cobre/química , Ligandos , Oxígeno/química , Cristalografía por Rayos X , Hierro/química , Agua/metabolismo
4.
bioRxiv ; 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37398274

RESUMEN

Solution scattering techniques, such as small and wide-angle X-ray scattering (SWAXS), provide valuable insights into the structure and dynamics of biological macromolecules in solution. In this study, we present an approach to accurately predict solution X-ray scattering profiles at wide angles from atomic models by generating high-resolution electron density maps. Our method accounts for the excluded volume of bulk solvent by calculating unique adjusted atomic volumes directly from the atomic coordinates. This approach eliminates the need for a free fitting parameter commonly used in existing algorithms, resulting in improved accuracy of the calculated SWAXS profile. An implicit model of the hydration shell is generated which uses the form factor of water. Two parameters, namely the bulk solvent density and the mean hydration shell contrast, are adjusted to best fit the data. Results using eight publicly available SWAXS profiles show high quality fits to the data. In each case, the optimized parameter values show small adjustments demonstrating that the default values are close to the true solution. Disabling parameter optimization results in a significant improvement of the calculated scattering profiles compared to the leading software. The algorithm is computationally efficient, showing more than tenfold reduction in execution time compared to the leading software. The algorithm is encoded in a command line script called denss.pdb2mrc.py and is available open source as part of the DENSS v1.7.0 software package (https://github.com/tdgrant1/denss). In addition to improving the ability to compare atomic models to experimental SWAXS data, these developments pave the way for increasing the accuracy of modeling algorithms utilizing SWAXS data while decreasing the risk of overfitting.

5.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292849

RESUMEN

RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free electron laser sources to reveal the formation and ready identification of Å scale features in structured and unstructured RNAs. New structural signatures of RNA secondary and tertiary structures are identified through wide angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base paired intermediate to assume a triple helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. In addition to understanding how RNA triplexes form and thereby function as dynamic signaling elements, this new method can vastly increase the rate of structure determination for these biologically essential, but mostly uncharacterized macromolecules.

6.
ACS Appl Bio Mater ; 6(6): 2415-2425, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37272968

RESUMEN

This study reports the development of a class of eco-friendly antifouling biocides based on a cyclic dipeptide scaffold, 2,5-diketopiperazine (2,5-DKP). The lead compound cyclo(N-Bip-l-Arg-N-Bip-l-Arg) (1) was synthesized in gram amounts and used to assess the compatibility with an ablation/hydration coating, efficacy against biofouling, and biodegradation. Leaching of 1 from the coating into seawater was assessed via a rotating drum method, revealing relatively stable and predictable leaching rates under dynamic shear stress conditions (36.1 ± 19.7 to 25.2 ± 9.1 ng-1 cm-2 day-1) but low or no leaching under static conditions. The coatings were further analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS), with 1 seen to localize at the surface of the coating in a surfactant-like fashion. When coatings were deployed in the ocean, detectable reductions in biofouling development were measured for up to 11 weeks. After this time, biofouling overwhelmed the performance of the coating, consistent with leaching kinetics. Biodegradation of 1 in seawater was assessed using theoretical oxygen demand and analytical quantification. Masking effects were observed at higher concentrations of 1 due to antimicrobial properties, but half-lives were calculated ranging from 13.4 to 16.2 days. The results can rationally inform future development toward commercial antifouling products.


Asunto(s)
Incrustaciones Biológicas , Desinfectantes , Incrustaciones Biológicas/prevención & control , Desinfectantes/farmacología , Desinfectantes/química , Péptidos , Cinética
7.
Lab Chip ; 23(13): 3016-3033, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37294576

RESUMEN

Droplet injection strategies are a promising tool to reduce the large amount of sample consumed in serial femtosecond crystallography (SFX) measurements at X-ray free electron lasers (XFELs) with continuous injection approaches. Here, we demonstrate a new modular microfluidic droplet injector (MDI) design that was successfully applied to deliver microcrystals of the human NAD(P)H:quinone oxidoreductase 1 (NQO1) and phycocyanin. We investigated droplet generation conditions through electrical stimulation for both protein samples and implemented hardware and software components for optimized crystal injection at the Macromolecular Femtosecond Crystallography (MFX) instrument at the Stanford Linac Coherent Light Source (LCLS). Under optimized droplet injection conditions, we demonstrate that up to 4-fold sample consumption savings can be achieved with the droplet injector. In addition, we collected a full data set with droplet injection for NQO1 protein crystals with a resolution up to 2.7 Å, leading to the first room-temperature structure of NQO1 at an XFEL. NQO1 is a flavoenzyme associated with cancer, Alzheimer's and Parkinson's disease, making it an attractive target for drug discovery. Our results reveal for the first time that residues Tyr128 and Phe232, which play key roles in the function of the protein, show an unexpected conformational heterogeneity at room temperature within the crystals. These results suggest that different substates exist in the conformational ensemble of NQO1 with functional and mechanistic implications for the enzyme's negative cooperativity through a conformational selection mechanism. Our study thus demonstrates that microfluidic droplet injection constitutes a robust sample-conserving injection method for SFX studies on protein crystals that are difficult to obtain in amounts necessary for continuous injection, including the large sample quantities required for time-resolved mix-and-inject studies.


Asunto(s)
Rayos Láser , Proteínas , Humanos , Cristalografía por Rayos X , Proteínas/química , Inyecciones , NAD(P)H Deshidrogenasa (Quinona)
8.
bioRxiv ; 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37214971

RESUMEN

Cytochrome c oxidase (C c O) is a large membrane-bound hemeprotein that catalyzes the reduction of dioxygen to water. Unlike classical dioxygen binding hemeproteins with a heme b group in their active sites, C c O has a unique binuclear center (BNC) comprised of a copper atom (Cu B ) and a heme a 3 iron, where O 2 binds and is reduced to water. CO is a versatile O 2 surrogate in ligand binding and escape reactions. Previous time-resolved spectroscopic studies of the CO complexes of bovine C c O (bC c O) revealed that photolyzing CO from the heme a 3 iron leads to a metastable intermediate (Cu B -CO), where CO is bound to Cu B , before it escapes out of the BNC. Here, with a time-resolved serial femtosecond X-ray crystallography-based pump-probe method, we detected a geminate photoproduct of the bC c O-CO complex, where CO is dissociated from the heme a 3 iron and moved to a temporary binding site midway between the Cu B and the heme a 3 iron, while the locations of the two metal centers and the conformation of the Helix-X, housing the proximal histidine ligand of the heme a 3 iron, remain in the CO complex state. This new structure, combined with other reported structures of bC c O, allows the full definition of the ligand dissociation trajectory, as well as the associated protein dynamics.

9.
Methods Enzymol ; 678: 145-192, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36641207

RESUMEN

Ab initio modeling methods have proven to be powerful means of interpreting solution scattering data. In the absence of atomic models, or complementary to them, ab initio modeling approaches can be used for generating low-resolution particle envelopes using only solution scattering profiles. Recently, a new ab initio reconstruction algorithm has been introduced to the scientific community, called DENSS. DENSS is unique among ab initio modeling algorithms in that it solves the inverse scattering problem, i.e., the 1D scattering intensities are directly used to determine the 3D particle density. The reconstruction of particle density has several advantages over conventional uniform density modeling approaches, including the ability to reconstruct a much wider range of particle types and the ability to visualize low-resolution density fluctuations inside the particle envelope. In this chapter we will discuss the theory behind this new approach, how to use DENSS, and how to interpret the results. Several examples with experimental and simulated data will be provided.


Asunto(s)
Algoritmos , Dispersión del Ángulo Pequeño
10.
Structure ; 31(2): 138-151.e5, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36630960

RESUMEN

NendoU from SARS-CoV-2 is responsible for the virus's ability to evade the innate immune system by cleaving the polyuridine leader sequence of antisense viral RNA. Here we report the room-temperature structure of NendoU, solved by serial femtosecond crystallography at an X-ray free-electron laser to 2.6 Å resolution. The room-temperature structure provides insight into the flexibility, dynamics, and other intrinsic properties of NendoU, with indications that the enzyme functions as an allosteric switch. Functional studies examining cleavage specificity in solution and in crystals support the uridine-purine cleavage preference, and we demonstrate that enzyme activity is fully maintained in crystal form. Optimizing the purification of NendoU and identifying suitable crystallization conditions set the benchmark for future time-resolved serial femtosecond crystallography studies. This could advance the design of antivirals with higher efficacy in treating coronaviral infections, since drugs that block allosteric conformational changes are less prone to drug resistance.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Cristalografía por Rayos X , Temperatura , Electrones , Rayos Láser
11.
Org Biomol Chem ; 20(47): 9431-9446, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36408605

RESUMEN

Marine biofouling is a problem that plagues all maritime industries at vast economic and environmental cost. Previous and current methods to prevent biofouling have employed the use of heavy metals and other toxic or highly persistent chemicals, and these methods are now coming under immense regulatory pressure. Recent studies have illustrated the potential of nature-inspired tetrasubstituted 2,5-diketopiperazines (2,5-DKPs) as eco-friendly marine biocides for biofouling control. These highly active symmetrically substituted 2,5-DKPs can be generated by combining structural motifs from cationic innate defence peptides and natural marine antifoulants. A balance between a threshold hydrophobic contribution and sufficient cationic charge has been established as key for bioactivity, and our current study further increases understanding of the antifouling mechanism by investigating the effect of both regio- and stereochemistry. Novel synthetic routes for the generation of unsymmetrical 2,5-DKPs were developed and a library of nine compounds was prepared. The compounds were screened against a series of four model macrofouling organisms (Ciona savignyi, Mytilus galloprovincialis, Spirobranchus cariniferus, and Undaria pinnatifida). Several of the evaluated compounds displayed inhibitory activity at sub-micromolar concentrations. The structural contributions to antifouling bioactivity were studied using NMR spectroscopy and molecular modelling, revealing a strong dependence on a stable amphiphilic solution structure regardless of substitution pattern.


Asunto(s)
Dicetopiperazinas , Dicetopiperazinas/farmacología
12.
Biophys Rep (N Y) ; 2(4): 100081, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36425668

RESUMEN

With advances in X-ray free-electron lasers (XFELs), serial femtosecond crystallography (SFX) has enabled the static and dynamic structure determination for challenging proteins such as membrane protein complexes. In SFX with XFELs, the crystals are typically destroyed after interacting with a single XFEL pulse. Therefore, thousands of new crystals must be sequentially introduced into the X-ray beam to collect full data sets. Because of the serial nature of any SFX experiment, up to 99% of the sample delivered to the X-ray beam during its "off-time" between X-ray pulses is wasted due to the intrinsic pulsed nature of all current XFELs. To solve this major problem of large and often limiting sample consumption, we report on improvements of a revolutionary sample-saving method that is compatible with all current XFELs. We previously reported 3D-printed injection devices coupled with gas dynamic virtual nozzles (GDVNs) capable of generating samples containing droplets segmented by an immiscible oil phase for jetting crystal-laden droplets into the path of an XFEL. Here, we have further improved the device design by including metal electrodes inducing electrowetting effects for improved control over droplet generation frequency to stimulate the droplet release to matching the XFEL repetition rate by employing an electrical feedback mechanism. We report the improvements in this electrically triggered segmented flow approach for sample conservation in comparison with a continuous GDVN injection using the microcrystals of lysozyme and 3-deoxy-D-manno-octulosonate 8-phosphate synthase and report the segmented flow approach for sample injection applied at the Macromolecular Femtosecond Crystallography instrument at the Linear Coherent Light Source for the first time.

13.
J Appl Crystallogr ; 55(Pt 5): 1116-1124, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36249494

RESUMEN

Small-angle scattering (SAS) probes the size and shape of particles at low resolution through the analysis of the scattering of X-rays or neutrons passing through a solution of particles. One approach to extracting structural information from SAS data is the indirect Fourier transform (IFT). The IFT approach parameterizes the real-space pair distribution function [P(r)] of a particle using a set of basis functions, which simultaneously determines the scattering profile [I(q)] using corresponding reciprocal-space basis functions. This article presents an extension of an IFT algorithm proposed by Moore [J. Appl. Cryst. (1980), 13, 168-175] which used a trigonometric series to describe the basis functions, where the real-space and reciprocal-space basis functions are Fourier mates. An equation is presented relating the Moore coefficients to the intensities of the SAS profile at specific positions, as well as a series of new equations that describe the size and shape parameters of a particle from this distinct set of intensity values. An analytical real-space regularizer is derived to smooth the P(r) curve and ameliorate systematic deviations caused by series termination. Regularization is commonly used in IFT methods though not described in Moore's original approach, which is particularly susceptible to such effects. The algorithm is provided as a script, denss.f it_data.py, as part of the DENSS software package for SAS, which includes both command line and interactive graphical interfaces. Results of the program using experimental data show that it is as accurate as, and often more accurate than, existing tools.

14.
PLoS One ; 17(8): e0267370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35913965

RESUMEN

Francisella tularensis is an extremely infectious pathogen and a category A bioterrorism agent. It causes the highly contagious zoonosis, Tularemia. Currently, FDA approved vaccines against tularemia are unavailable. F. tularensis outer membrane protein A (FopA) is a well-studied virulence determinant and protective antigen against tularemia. It is a major outer membrane protein (Omp) of F. tularensis. However, FopA-based therapeutic intervention is hindered due to lack of complete structural information for membrane localized mature FopA. In our study, we established recombinant expression, monodisperse purification, crystallization and X-ray diffraction (~6.5 Å) of membrane localized mature FopA. Further, we performed bioinformatics and biophysical experiments to unveil its structural organization in the outer membrane. FopA consists of 393 amino acids and has less than 40% sequence identity to known bacterial Omps. Using comprehensive sequence alignments and structure predictions together with existing partial structural information, we propose a two-domain organization for FopA. Circular dichroism spectroscopy and heat modifiability assay confirmed FopA has a ß-barrel domain consistent with alphafold2's prediction of an eight stranded ß-barrel at the N-terminus. Small angle X-ray scattering (SAXS) and native-polyacrylamide gel electrophoresis revealed FopA purified in detergent micelles is predominantly dimeric. Molecular density derived from SAXS at 31 Å shows putative dimeric N-terminal ß-barrels surrounded by detergent corona and connected to C-terminal domains via flexible linker. Disorder analysis predicts N- and C-terminal domains are interspersed by a long intrinsically disordered region and alphafold2 predicts this region to be largely unstructured. Taken together, we propose a dimeric, two-domain organization of FopA in the outer membrane: the N-terminal ß-barrel is membrane embedded, provides dimerization interface and tethers to membrane extrinsic C-terminal domain via long flexible linker. Structure determination of membrane localized mature FopA is essential to understand its role in pathogenesis and develop anti-tularemia therapeutics. Our results pave the way towards it.


Asunto(s)
Francisella tularensis , Tularemia , Detergentes , Humanos , Dispersión del Ángulo Pequeño , Tularemia/microbiología , Difracción de Rayos X
15.
ACS Med Chem Lett ; 13(4): 632-640, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35450374

RESUMEN

Antimicrobial drug resistance is a looming health crisis facing us in the modern era, and new drugs are urgently needed to combat this growing problem. Synthetic mimics of antimicrobial peptides have recently emerged as a promising class of compounds for the treatment of persistent microbial infections. In the current study, we investigate five cyclic N-alkylated amphiphilic 2,5-diketopiperazines against 15 different strains of bacteria and fungi, including drug-resistant clinical isolates. Several of the 2,5-diketopiperazines displayed activities similar or superior to antibiotics currently in clinical use, with activities coupled to both the cationic and hydrophobic substituents. All possible stereoisomers of the lead peptide were prepared, and the effects of stereochemistry and amphiphilicity were investigated via 1D and 2D NMR spectroscopy, solution dynamics, and membrane interaction modeling. Clear differences in solution structures and membrane interaction potentials explain the differences seen in the bioactivity and physicochemical properties of each stereoisomer.

16.
Radiol Case Rep ; 17(4): 1037-1040, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35145565

RESUMEN

Excipient Lung Disease is an inflammatory response to the intravenous administration of oral formulations of drugs and their excipients (additives). Previously described offenders include opioids and Ritalin, whose excipients, when crushed and administered intravenously, lead to inflammation and are demonstrated by centrilobular nodules and ground-glass formations on Chest Computed Tomography. In this case report, we demonstrate Chest CT findings of excipient lung disease in a patient using etizolam, a benzodiazepine derivative commonly used as an anxiolytic in Japan. Of note, the patient acquired etizolam for purchase through online retailers without prescription, which is becoming more common occurrence and offers the additional risk of unknown formulations.

17.
Sci Total Environ ; 812: 152487, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34953845

RESUMEN

Marine biofouling plagues all maritime industries at vast economic and environmental cost. Previous and most current methods to control biofouling have employed highly persistent toxins and heavy metals, including tin, copper, and zinc. These toxic methods are resulting in unacceptable environmental harm and are coming under immense regulatory pressure. Eco-friendly alternatives are urgently required to effectively mitigate the negative consequence of biofouling without causing collateral harm. Amphiphilic micropeptides have recently been shown to exhibit excellent broad-spectrum antifouling activity, with a non-toxic mode of action and innate biodegradability. The present work focused on incorporating the pharmacophore derived from amphiphilic micropeptides into a 2,5-diketopiperazine (DKP) scaffold. This privileged structure is present in a vast number of natural products, including marine natural product antifoulants, and provides advantages of synthetic accessibility and adaptability. A novel route to symmetrical tetrasubstituted DKPs was developed and a library of amphiphilic 2,5-DKPs were subsequently synthesised. These biodegradable compounds were demonstrated to be potent marine antifoulants displaying broad-spectrum activity in the low micromolar range against a range of common marine fouling organisms. The outcome of planned coating and field trials will dictate the future development of the lead compounds.


Asunto(s)
Incrustaciones Biológicas , Desinfectantes , Organismos Acuáticos , Incrustaciones Biológicas/prevención & control , Dicetopiperazinas , Desinfectantes/toxicidad
18.
J Surg Case Rep ; 2021(10): rjab485, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34729174

RESUMEN

We report the symptom evolution of a young female trauma patient leading to a diagnosis of fat embolism syndrome (FES). Twenty-four hours post-trauma she developed respiratory distress, followed by transient neurological compromise and later petechia. The subtle and fluctuating nature of her presentation made the diagnosis via existing clinical criteria challenging, as did the lack of specificity of thoracic computerized tomography due to the concurrent coronavirus (COVID-19) pandemic. Making the diagnosis was important as it changed the patient's management, likely preventing a diagnosis in extremis. This case emphasizes the importance of maintaining a high clinical suspicion of FES in any (poly)trauma patient. This is especially true during COVID-19, as correctly identifying non-COVID-19 causes of respiratory failure will prevent additional pandemic victims. In addition, this case supports the need for a diagnostic approach that balances clinical, biochemical and imaging features and takes a cumulative approach in order to identify subacute FES.

19.
Cureus ; 13(6): e15830, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34327071

RESUMEN

Chronic venous insufficiency is one of the most common benign diseases in America. For treatment, minimally invasive techniques have become the first-line option. The literature shows that these procedures are well tolerated and work effectively without leaving the patient with unaesthetic operative scars. We discuss the case of a patient who developed two right lower extremity neuromas as a rare complication following endovenous laser ablation and microphlebectomy procedures for the treatment of varicose veins. Ultrasound is the preferred imaging modality for the visualization and diagnosis of a neuroma and should be performed in post-phlebectomy patients with severe and persistent sensory pattern disruption as neuroma formation can lead to significant complications for the patient.

20.
Nat Commun ; 12(1): 1762, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741910

RESUMEN

Time-resolved studies of biomacromolecular crystals have been limited to systems involving only minute conformational changes within the same lattice. Ligand-induced changes greater than several angstroms, however, are likely to result in solid-solid phase transitions, which require a detailed understanding of the mechanistic interplay between conformational and lattice transitions. Here we report the synchronous behavior of the adenine riboswitch aptamer RNA in crystal during ligand-triggered isothermal phase transitions. Direct visualization using polarized video microscopy and atomic force microscopy shows that the RNA molecules undergo cooperative rearrangements that maintain lattice order, whose cell parameters change distinctly as a function of time. The bulk lattice order throughout the transition is further supported by time-resolved diffraction data from crystals using an X-ray free electron laser. The synchronous molecular rearrangements in crystal provide the physical basis for studying large conformational changes using time-resolved crystallography and micro/nanocrystals.


Asunto(s)
Conformación de Ácido Nucleico , Transición de Fase , ARN/química , Riboswitch , Adenina/química , Aptámeros de Nucleótidos/química , Cristalografía por Rayos X , Microscopía de Fuerza Atómica/métodos , Microscopía de Polarización/métodos , Modelos Moleculares , Imagen de Lapso de Tiempo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...