Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Chem Theory Comput ; 20(6): 2592-2604, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38456629

RESUMEN

Methods for electronic structure computations, such as density functional theory (DFT), are routinely used for the calculation of spectroscopic parameters to establish and validate structure-parameter correlations. DFT calculations, however, are computationally expensive for large systems such as polymers. This work explores the machine learning (ML) of isotropic g values, giso, obtained from electron paramagnetic resonance (EPR) experiments of an organic radical polymer. An ML model based on regression trees is trained on DFT-calculated g values of poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) polymer structures extracted from different time frames of a molecular dynamics trajectory. The DFT-derived g values, gisocalc, for different radical densities of PTMA, are compared against experimentally derived g values obtained from in operando EPR measurements of a PTMA-based organic radical battery. The ML-predicted giso values, gisopred, were compared with gisocalc to evaluate the performance of the model. Mean deviations of gisopred from gisocalc were found to be on the order of 0.0001. Furthermore, a performance evaluation on test structures from a separate MD trajectory indicated that the model is sensitive to the radical density and efficiently learns to predict giso values even for radical densities that were not part of the training data set. Since our trained model can reproduce the changes in giso along the MD trajectory and is sensitive to the extent of equilibration of the polymer structure, it is a promising alternative to computationally more expensive DFT methods, particularly for large systems that cannot be easily represented by a smaller model system.

3.
Commun Chem ; 6(1): 268, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057421

RESUMEN

The electrolytic reduction of CO2 in aqueous media promises a pathway for the utilization of the green house gas by converting it to base chemicals or building blocks thereof. However, the technology is currently not economically feasible, where one reason lies in insufficient reaction rates and selectivities. Current research of CO2 electrolysis is becoming aware of the importance of the local environment and reactions at the electrodes and their proximity, which can be only assessed under true catalytic conditions, i.e. by in operando techniques. In this work, multinuclear in operando NMR techniques were applied in order to investigate the evolution of the electrolyte chemistry during CO2 electrolysis. The CO2 electroreduction was performed in aqueous NaHCO3 or KHCO3 electrolytes at silver electrodes. Based on 13C and 23Na NMR studies at different magnetic fields, it was found that the dynamic equilibrium of the electrolyte salt in solution, existing as ion pairs and free ions, decelerates with increasingly negative potential. In turn, this equilibrium affects the resupply rate of CO2 to the electrolysis reaction from the electrolyte. Substantiated by relaxation measurements, a mechanism was proposed where stable ion pairs in solution catalyze the bicarbonate dehydration reaction, which may provide a new pathway for improving educt resupply during CO2 electrolysis.

4.
Sci Rep ; 13(1): 10934, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414786

RESUMEN

Organic radical batteries (ORBs) represent a viable pathway to a more sustainable energy storage technology compared to conventional Li-ion batteries. For further materials and cell development towards competitive energy and power densities, a deeper understanding of electron transport and conductivity in organic radical polymer cathodes is required. Such electron transport is characterised by electron hopping processes, which depend on the presence of closely spaced hopping sites. Using a combination of electrochemical, electron paramagnetic resonance (EPR) spectroscopic, and theoretical molecular dynamics as well as density functional theory modelling techniques, we explored how compositional characteristics of cross-linked poly(2,2,6,6-tetramethyl-1-piperidinyloxy-4-yl methacrylate) (PTMA) polymers govern electron hopping and rationalise their impact on ORB performance. Electrochemistry and EPR spectroscopy not only show a correlation between capacity and the total number of radicals in an ORB using a PTMA cathode, but also indicates that the state-of-health degrades about twice as fast if the amount of radical is reduced by 15%. The presence of up to 3% free monomer radicals did not improve fast charging capabilities. Pulsed EPR indicated that these radicals readily dissolve into the electrolyte but a direct effect on battery degradation could not be shown. However, a qualitative impact cannot be excluded either. The work further illustrates that nitroxide units have a high affinity to the carbon black conductive additive, indicating the possibility of its participation in electron hopping. At the same time, the polymers attempt to adopt a compact conformation to increase radical-radical contact. Hence, a kinetic competition exists, which might gradually be altered towards a thermodynamically more stable configuration by repeated cycling, yet further investigations are required for its characterisation.


Asunto(s)
Electrólitos , Polímeros , Transporte de Electrón , Electrólitos/química , Radicales Libres/química , Polímeros/química , Electrónica
5.
Commun Chem ; 6(1): 113, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286703

RESUMEN

It is of general interest to combine the faradaic processes based high energy density of a battery with the non-faradaic processes based high power density of a capacitor in one cell. Surface area and functional groups of electrode materials strongly affect these properties. For the anode material Li4Ti5O12 (LTO), we suggest a polaron based mechanism that influences Li ion uptake and mobility. Here we show electrolytes containing a lithium salt induce an observable change in the bulk NMR relaxation properties of LTO nano particles. The longitudinal 7Li NMR relaxation time of bulk LTO can change by almost an order of magnitude and, therefore, reacts very sensitively to the cation and its concentration in the surrounding electrolyte. The reversible effect is largely independent of the used anions and of potential anion decomposition products. It is concluded that lithium salt containing electrolytes increase the mobility of surface polarons. These polarons and additional lithium cations from the electrolyte can now diffuse through the bulk, induce the observed enhanced relaxation rate and enable the non-faradaic process. This picture of a Li+ ion equilibrium between electrolyte and solid may help with improving the charging properties of electrode materials.

6.
Phys Chem Chem Phys ; 25(18): 12767-12776, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37128728

RESUMEN

The addition of conductive additives during electrode fabrication is standard practice to mitigate a low intrinsic electronic conductivity of most cathode materials used in Li-ion batteries. To ensure an optimal conduction pathway, these conductive additives, which generally consist of carbon particles, need to be in good contact with the active compounds. Herein, we demonstrate how a combination of pulsed electron paramagnetic resonance (EPR) relaxometry and inverse Laplace transform (ILT) can be used to study such contact. The investigated system consists of PTMA (poly(2,2,6,6-tetramethylpiperidinyloxy-4-ylmethacrylate)) monomer radicals, which is a commonly used redox unit in organic radical batteries (ORB), mixed at different ratios with Super P carbon black (CB) as the conductive additive. Inversion recovery data were acquired to determine longitudinal (T1) relaxation time constant distributions. It was observed that not only the position and relative amplitude, but also the number of relaxation modes varies as the composition of PTMA monomer and CB is changed, thereby justifying the use of ILT instead of fitting with a predetermined number of components. A hypothesis for the origin of different relaxation modes was devised. It suggests that the electrode composition may locally affect the quality of electronic contact between the active material and carbon black.

7.
RSC Adv ; 13(21): 14565-14574, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37188254

RESUMEN

The identification of fundamental relationships between atomic configuration and electronic structure typically requires experimental empiricism or systematic theoretical studies. Here, we provide an alternative statistical approach to gauge the importance of structure parameters, i.e., bond lengths, bond angles, and dihedral angles, for hyperfine coupling constants in organic radicals. Hyperfine coupling constants describe electron-nuclear interactions defined by the electronic structure and are experimentally measurable, for example, by electron paramagnetic resonance spectroscopy. Importance quantifiers are computed with the machine learning algorithm neighborhood components analysis using molecular dynamics trajectory snapshots. Atomic-electronic structure relationships are visualized in matrices correlating structure parameters with coupling constants of all magnetic nuclei. Qualitatively, the results reproduce common hyperfine coupling models. Tools to use the presented procedure for other radicals/paramagnetic species or other atomic structure-dependent parameters are provided.

8.
Sci Rep ; 12(1): 8274, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585102

RESUMEN

The electrochemical carbon dioxide reduction on copper attracted considerable attention within the last decade, since Cu is the only elemental transition metal that catalyses the formation of short-chain hydrocarbons and alcohols. Research in this field is mainly focused on understanding the reaction mechanism in terms of adsorbates and intermediates. Furthermore, dynamic changes in the micro-environment of the catalyst, i.e. local pH and [Formula: see text] concentration values, play an equivalently important role in the selectivity of product formation. In this study, we present an in operando [Formula: see text] nuclear magnetic resonance technique that enables the simultaneous measurement of pH and [Formula: see text] concentration in electrode vicinity during electroreduction. The influence of applied potential and buffer capacity of the electrolyte on the formation of formate is demonstrated. Theoretical considerations are confirmed experimentally and the importance of the interplay between catalyst and electrolyte is emphasised.

9.
Chemphyschem ; 23(1): e202100602, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34708481

RESUMEN

Choline-based electrolytes have been proposed as environmentally friendly and low-cost alternatives for secondary zinc air batteries. Choline acetate [Ch]+ [OAc]- in protic (D2 O) and aprotic (DMSO-d6 ) solvents has been studied by means of concentration-dependent 1 H NMR, viscosity, and density measurements. The viscosities have been calculated on the basis of the Jones-Dole equation and showed that the dominant contribution originates from short-range ion-solvent interactions. Site-specific association affinities were assigned from NMR chemical shift titrations. In DMSO-d6 , the hydroxyl group of choline was found to have the smallest dissociation constant followed by the methyl group of acetate. The corresponding Gibbs energies at low concentration were found to be in agreement with a solvent-separated ion pair (2SIP) configuration, whereas at concentrations above 300 mM, a solvent-shared ion pair (SIP) configuration was assigned. For [Ch]+ [OAc]- in D2 O, association effects were found to be weaker, attributed to the high dielectric constant of the solvent. On time scales on the order of 100 ms, NMR linewidth perturbations indicated a change in the local rotational dynamics of the ions, attributed to short-range cation-solvent interactions and not to solvent viscosity. At 184 mM, ∼ 40 % of the cations in DMSO-d6 and ∼ 10 % in D2 O were found to exhibit short-range interactions, as indicated by the linewidth perturbations. It was found that at about 300 mM, the ions in DMSO-d6 exhibit a transition from free to collective translational dynamics on time scales on the order of 400 ms. In DMSO-d6 , both ions were found to be almost equally solvated, whereas in D2 O solvation of acetate was stronger, as indicated by the obtained effective hydrodynamic radii. For [Ch]+ [OAc]- in DMSO-d6 , the results suggest a solvent-shared ion association with weak H-bonding interactions for concentrations between 0.3-1 M. Overall, the extent of ion association in solvents such as DMSO is not expected to significantly limit charge transport and hinder the performance of choline-based electrolytes.


Asunto(s)
Acetatos , Electrólitos , Colina , Iones , Solventes
10.
Molecules ; 26(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34771100

RESUMEN

Electrolytes based on ionic liquids (IL) are promising candidates to replace traditional liquid electrolytes in electrochemical systems, particularly in combination with carbon-based porous electrodes. Insight into the dynamics of such systems is imperative for tailoring electrochemical performance. In this work, 1-Methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-Hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide were studied in a carbon black (CB) host using spectrally resolved Carr-Purcell-Meiboom-Gill (CPMG) and 13-interval Pulsed Field Gradient Stimulated Echo (PFGSTE) Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR). Data were processed using a sensitivity weighted Laplace inversion algorithm without non-negativity constraint. Previously found relations between the alkyl length and the aggregation behavior of pyrrolidinium-based cations were confirmed and characterized in more detail. For the IL in CB, a different aggregation behavior was found compared to the neat IL, adding the surface of a porous electrode as an additional parameter for the optimization of IL-based electrolytes. Finally, the suitability of MAS was assessed and critically discussed for investigations of this class of samples.

11.
ACS Appl Mater Interfaces ; 13(25): 30187-30197, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34129331

RESUMEN

Developing high-performance Fe-based ammonia catalysts through simple and cost-efficient methods has received an increased level of attention. Herein, we report for the first time, the synthesis of two-dimensional (2D) FeOOH nanoflakes encapsulated by mesoporous SiO2 (mSiO2) via a simple solution-based method for ammonia synthesis. Due to the sticking of the mSiO2 coating layers and the limited spaces in between, the Fe after reduction retains the 2D morphology, showing high resistance against the sintering in the harsh Haber-Bosch process. Compared to supported Fe particles dispersed on mSiO2 spheres, the coated catalyst shows a significantly improved catalytic activity by 50% at 425 °C. Thermal desorption spectroscopy (TDS) reveals the existence of a higher density of reactive sites for N2 activation in the 2D Fe catalyst, which is possibly coupled to a larger density of surface defect sites (kinks, steps, point defects) that are generally considered as active centers in ammonia synthesis. Besides the structural impact of the coating on the 2D Fe, the electronic one is elucidated by partially substituting Si with Al in the coating, confirmed by 29Si and 27Al magic-angle spinning nuclear magnetic resonance (MAS NMR). An increased apparent activation energy (Ea) of the Al-containing catalyst evidences an influence on the nature of the active site. The herein-developed stable 2D Fe nanostructures can serve as an example of a 2D material applied in catalysis, offering the chance of a rational catalyst design based on a stepwise introduction of various promoters, in the coating and on the metal, maintaining the spatial control of the active centers.

12.
Magn Reson (Gott) ; 2(1): 265-280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37904775

RESUMEN

In operando nuclear magnetic resonance (NMR) spectroscopy is one method for the online investigation of electrochemical systems and reactions. It allows for real-time observations of the formation of products and intermediates, and it grants insights into the interactions of substrates and catalysts. An in operando NMR setup for the investigation of the electrolytic reduction of CO2 at silver electrodes has been developed. The electrolysis cell consists of a three-electrode setup using a working electrode of pristine silver, a chlorinated silver wire as the reference electrode, and a graphite counter electrode. The setup can be adjusted for the use of different electrode materials and fits inside a 5 mm NMR tube. Additionally, a shielding setup was employed to minimize noise caused by interference of external radio frequency (RF) waves with the conductive components of the setup. The electrochemical performance of the in operando electrolysis setup is compared with a standard CO2 electrolysis cell. The small cell geometry impedes the release of gaseous products, and thus it is primarily suited for current densities below 1 mA cm-2. The effect of conductive components on 13C NMR experiments was studied using a CO2-saturated solution of aqueous bicarbonate electrolyte. Despite the B0 field distortions caused by the electrodes, a proper shimming could be attained, and line widths of ca. 1 Hz were achieved. This enables investigations in the sub-Hertz range by NMR spectroscopy. High-resolution 13C NMR and relaxation time measurements proved to be sensitive to changes in the sample. It was found that the dynamics of the bicarbonate electrolyte varies not only due to interactions with the silver electrode, which leads to the formation of an electrical double layer and catalyzes the exchange reaction between CO2 and HCO3-, but also due to interactions with the electrochemical setup. This highlights the necessity of a step-by-step experiment design for a mechanistic understanding of processes occurring during electrochemical CO2 reduction.

13.
J Magn Reson ; 314: 106724, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32278774

RESUMEN

The demand for compact benchtop NMR systems that can resolve chemical shift differences in the ppm to sub-ppm range is growing. However due to material and size restrictions these magnets are limited in field strength and thus in signal intensity and quality. The implementation of standard hyperpolarization techniques is a next step in an effort to boost the signal. Here we present a compact Overhauser Dynamic Nuclear Polarization (ODNP) setup with a permanent magnet that can resolve 1H chemical shift differences in the ppm range. The assembly of the setup and its components are described in detail, and the functionality of the setup is demonstrated experimentally with ODNP enhanced relaxation measurements yielding a maximal enhancement of -140 for an aqueous 4-hydroxy-TEMPO solution. Additionally, 1H spectroscopic resolution and significant enhancements are demonstrated on acetic acid as a solvent.

14.
J Magn Reson ; 312: 106688, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32004819

RESUMEN

In a typical magic-angle spinning (MAS) dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) experiment, several mechanisms are simultaneously involved when transferring much larger polarization of electron spins to NMR active nuclei of interest. Recently, specific cross-relaxation enhancement by active motions under DNP (SCREAM-DNP) [Daube et al. JACS 2016] has been reported as one of these mechanisms. Thereby 13C enhancement with inverted sign was observed in a direct polarization (DP) MAS DNP experiment, caused by reorientation dynamics of methyl that was not frozen out at 100 K. Here, we report on the spontaneous polarization transfer from hyperpolarized 1H to both primary amine and ammonium nitrogens, resulting in an additional positive signal enhancement in the 15N NMR spectra during 15N DP-MAS DNP. The cross-relaxation induced signal enhancement (CRE) for 15N is of opposite sign compared to that observed for 13C due to the negative sign of the gyromagnetic ratio of 15N. The influence on CRE efficiency caused by variation of the radical solution composition and by temperature was also investigated.

15.
Phys Chem Chem Phys ; 21(31): 17018-17028, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31348470

RESUMEN

The intrinsic ionic nature of room temperature ionic liquids (RTILs) bears the potential to replace classical aqueous electrolytes in electrochemical applications, for example in metal-air batteries. For a systematic adjustment of RTIL properties in porous cathodes, the ionic arrangement under confinement is of prime importance. Using spectrally resolved pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) and spin-lattice NMR relaxation time (T1) distributions, the dynamics of 1-methyl-1-propylpyrrolidiniumbis(trifluoromethylsulfonyl)imide ([Pyr13][Tf2N]) confined to carbon black were investigated. A considerable dependence of the [PYR13] mobility on the loading fraction of the carbon black pore space was found. There is evidence for a preferential layering of the RTIL adjacent to the carbon surface and a dependence of the ionic configuration on the local structure of the carbon surface. The inversion efficiency of inversion-recovery T1 data indicates a quasi-stationary layer at the carbon surface with solid-like properties, where the bulk-like properties of the RTIL are adopted as the distance to the surface increases. From the NMR diffusion data an intermediate layer between the quasi-stationary and the bulk-like RTIL is evident. This layer shows a particularly strong pore space loading dependence. While it has an anisotropic, two-dimensional mobility with reduced diffusion perpendicular to the surface at any loading, when it interfaces a gas phase at low loading its mobility is higher than bulk diffusion by up to an order of magnitude and chemical exchange with other layers is low. This layer appears to be of particular importance for the ion exchange between RTIL environments with different spacing from the carbon surface and hence crucial for the overall dynamics of RTILs in the investigated porous environment.

16.
Phys Chem Chem Phys ; 20(41): 26660-26674, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30320331

RESUMEN

Nafion is the most common material used as a proton exchange membrane in fuel cells. Yet, details of the transport pathways for protons and water in the inner membrane are still under debate. Overhauser Dynamic Nuclear Polarization (ODNP) has proven to be a useful tool for probing hydration dynamics and interactions within 5-8 Å of protein and soft material surfaces. Recently it was suggested that ODNP can also be applied to analyze surface water dynamics along Nafion's inner membrane. Here we interrogate the viability of this method for Nafion by carrying out a series of measurements relying on 1H nuclear magnetic resonance (NMR) relaxometry and diffusometry experiments with and without ODNP hyperpolarization, accompanied by other complementary characterization methods including small angle X-ray scattering (SAXS), thermal gravimetric analysis (TGA) of hydration, and proton conductivity by AC impedance spectroscopy. Our comprehensive study shows that commonly used paramagnetic spin probes-here, stable nitroxide radicals-for ODNP, as well as their diamagnetic analogues, reduce the inner membrane surface hydrophilicity, depending on the location and concentration of the spin probe. This heavily reduces the hydration of Nafion, hence increases the tortuosity of the inner membrane morphology and/or increases the activiation barrier for water transport, and consequently impedes water diffusion, transport, and proton conductivity.

17.
J Phys Chem A ; 122(40): 7983-7990, 2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30222345

RESUMEN

An ab initio simulation scheme is introduced as a theoretical prescreening approach to facilitate and enhance the research for pH-sensitive biomarkers. The proton 1H and carbon 13C nuclear magnetic resonance (NMR) chemical shifts of the recently published marker for extracellular pH, [1,5-13C2]zymonic acid (ZA), and the as yet unpublished ( Z)-4-methyl-2-oxopent-3-enedioic acid (OMPD) were calculated with ab initio methods as a function of the pH. The influence of the aqueous solvent was taken into account either by an implicit solvent model or by explicit water molecules, where the latter improved the accuracy of the calculated chemical shifts considerably. The theoretically predicted chemical shifts allowed for a reliable NMR peak assignment. The p Ka value of the first deprotonation of ZA and OMPD was simulated successfully whereas the parametrization of the implicit solvent model does not allow for an accurate description of the second p Ka. The theoretical models reproduce the pH-induced chemical shift changes and the first p Ka with sufficient accuracy to establish the ab initio prescreening approach as a valuable support to guide the experimental search for pH-sensitive biomarkers.


Asunto(s)
4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Alquenos/química , Biomarcadores/química , Ácidos Carboxílicos/química , Furanos/química , Ácidos Cetoglutáricos/química , Imagen por Resonancia Magnética , Isótopos de Carbono , Espectroscopía de Resonancia Magnética con Carbono-13 , Simulación por Computador , Concentración de Iones de Hidrógeno , Modelos Químicos , Espectroscopía de Protones por Resonancia Magnética , Agua/química
18.
Sci Rep ; 8(1): 14331, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30254250

RESUMEN

Conduction Electron Paramagnetic Resonance Imaging (CEPRI) is presented as a sensitive technique for mapping metallic lithium species. The method is demonstrated using different samples that are either thick or thin compared to the microwave skin depth. As a thin sample, microstructured metallic lithium deposits in a lithium-ion battery (LIB) separator were analysed, illustrating the capabilities of CEPRI by obtaining a high-resolution image with an image resolution in the micrometre range. Limitations and intricacies of the method due to non-linear effects caused by the skin effect are discussed based on images of surface patterns on thick metallic lithium samples. The lineshape of the EPR spectrum is introduced as a proxy to determine the suitability of CEPRI for the quantitative visualisation of metallic lithium deposits. The results suggest that CEPRI is particularly suited to analyse the spatial distribution of microstructured Li that forms during charging and discharging of LIB cells, including the localization of the point of failure in the case of an internal cell short circuit caused by dendrites.

19.
Phys Chem Chem Phys ; 20(20): 13765-13776, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29740646

RESUMEN

To improve the lifetime of lithium-ion batteries, a detailed understanding of the degradation mechanisms is essential. Nuclear magnetic resonance (NMR) is able to unravel the reversible as well as irreversible transient changes of composition, shape and morphology in a battery cell. Using a newly developed cylindrical battery container free of metallic components in combination with a numerically optimized saddle coil, in operando NMR investigations of battery cells over hundreds of charge/discharge cycles are presented. Alternating with NMR data acquisition, electrochemical impedance spectra (EIS) can be recorded, which enables correlative analysis of the two techniques. Long-run in operando NMR measurements on a Li metal vs. graphite cell reveal the formation and evolution of mossy and dendritic Li microstructures over a period of 1000 h, which illustrates the capabilities of NMR to identify dendrite mitigation strategies in cells operated under realistic conditions.

20.
Chemistry ; 24(47): 12298-12317, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-29575186

RESUMEN

Nitrogen-containing hydrothermal carbon (N-HTC) materials of spherical particle morphology were prepared by means of hydrothermal synthesis with glucose and urotropine as precursors. The molar ratio of glucose to urotropine has been varied to achieve a continuous increase in nitrogen content. By raising the ratio of urotropine to glucose, a maximal nitrogen fraction of about 19 wt % could be obtained. Decomposition products of both glucose and urotropine react with each other; this opens up a variety of possible reaction pathways. The pH has a pronounced effect on the reaction pathway of the corresponding reaction steps. For the first time, a comprehensive analytical investigation, comprising a multitude of analytical tools and instruments, of a series of nitrogen-containing HTC materials was applied. Functional groups and structural motifs identified were analyzed by means of FTIR spectroscopy, thermogravimetric MS, and solid-state NMR spectroscopy. Information on reaction mechanisms and structural details were obtained by electronic structure calculations that were compared with vibrational spectra of polyfuran or polypyrrole-like groups, which represent structural motifs occurring in the present samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...