Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 9(4)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252245

RESUMEN

Over the past decade, there have been accumulating reports from farmers and field extension personnel on the increasing incidence and spread of onion (Allium cepa) bulb basal rot in northern Israel. The disease is caused mainly by Fusarium species. Rotting onion bulbs were sampled from fields in the Golan Heights in northeastern Israel during the summers of 2017 and 2018. Tissue from the sampled onion bulbs was used for the isolation and identification of the infecting fungal species using colony and microscopic morphology characterization. Final confirmation of the pathogens was performed with PCR amplification and sequencing using fungi-specific and Fusarium species-specific primers. Four Fusarium spp. isolates were identified in onion bulbs samples collected from the contaminated field: F. proliferatum, F. oxysporum f. sp. cepae, and two species less familiar as causative agents of this disease, F. acutatum and F. anthophilium. Phylogenetic analysis revealed that these species subdivided into two populations, a northern group isolated from white (Riverside cv.) onion bulbs, and a southern group isolated from red (565/505 cv.) bulbs. Pathogenicity tests conducted with seedlings and bulbs under moist conditions proved that all species could cause the disease symptoms, but with different degrees of virulence. Inoculating seeds with spore suspensions of the four species, in vitro, significantly reduced seedlings' germination rate, hypocotyl elongation, and fresh biomass. Mature onion bulbs infected with the fungal isolates produced typical rot symptoms 14 days post-inoculation, and the fungus from each infected bulb was re-isolated and identified to satisfy Koch's postulates. The onion bulb assay also reflected the degree of sensitivity of different onion cultivars to the disease. This work is the first confirmed report of the direct and primary cause of Fusarium onion basal rot disease in northeastern Israel. These findings are a necessary step towards uncovering the mycoflora of the diseased onion plants and developing a preventive program that would reduce the disease damage.

2.
PLoS One ; 13(12): e0208353, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30562344

RESUMEN

Late wilt, a disease severely affecting maize fields throughout Israel, is characterized by relatively rapid wilting of maize plants before tasseling and until shortly before maturity. The disease's causal agent is the fungus Harpophora maydis, a soil-borne and seed-borne pathogen, which is currently controlled using reduced sensitivity maize cultivars. In a former study, we showed that Azoxystrobin (AS) injected into a drip irrigation line assigned for each row can suppress H. maydis in the field and that AS seed coating can provide an additional layer of protection. In the present study, we examine a more cost-effective protective treatment using this fungicide with Difenoconazole mixture (AS+DC), or Fluazinam, or Fluopyram and Trifloxystrobin mixture, or Prothioconazole and Tebuconazole mixture in combined treatment of seed coating and a drip irrigation line for two coupling rows. A recently developed Real-Time PCR method revealed that protecting the plants using AS+DC seed coating alone managed to delay pathogen DNA spread in the maize tissues, in the early stages of the growth season (up to the age of 50 days from sowing), but was less effective in protecting the crops later. AS+DC seed coating combined with drip irrigation using AS+DC was the most successful treatment, and in the double-row cultivation, it reduced fungal DNA in the host tissues to near zero levels. This treatment minimized the development of wilt symptoms by 41% and recovered cob yield by a factor of 1.6 (to the level common in healthy fields). Moreover, the yield classified as A class (cob weight of more than 250 g) increased from 58% to 75% in this treatment. This successful treatment against H. maydis in Israel can now be applied in vast areas to protect sensitive maize cultivars against maize late wilt disease.


Asunto(s)
Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Ascomicetos/patogenicidad , Zea mays/microbiología , Acetatos/farmacología , Benzamidas/farmacología , Dioxolanos/farmacología , Iminas/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Piridinas/farmacología , Estrobilurinas/farmacología , Triazoles/farmacología
3.
J Econ Entomol ; 109(1): 120-31, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26567332

RESUMEN

The tomato leafminer, Tuta absoluta (Meyrick), had established in Israel by 2010, attacking both open-field tomatoes and greenhouse crops.We searched for its natural enemies in open-field tomatoes, and tried to determine their potential for controlling this pest. We surveyed the local natural enemies in open tomato fields and measured their impact on pest populations in an unsprayed field. We assessed the suppressive ability of the dominant hemipteran predator, Nesidiocoris tenuis Reuter, against T. absoluta under controlled laboratory conditions and evaluated the impact of its augmentation on T. absoluta control in open-field tomatoes. We found five natural enemy species:the predator, N. tenuis, two braconids, and two eulophids. Predation accounted for 64.5±9.2% (mean ± SE) of T. absoluta larval mortality, whereas parasitism accounted for 20.96±7.5%. Together, they eliminated the pest population at tomato harvest time. Under controlled conditions, predation by N. tenuis rose from 58 to 72% with increased density of T. absoluta, suggesting positive density dependence. The reduction of T. absoluta (83%) by N. tenuis was higher than that of Bemisia tabaci (32%), suggesting a preference of N. tenuis for T. absoluta. Augmentation of N.tenuis was as effective as conventional treatment insecticide treatment, and plant damage was low and did not seem to affect yield. Results indicate that reduced pesticide use enables indigenous natural enemies, particularly N.tenuis, to successfully control T. absoluta and prevent crop damage in open-field tomatoes.


Asunto(s)
Cadena Alimentaria , Heterópteros/fisiología , Mariposas Nocturnas/fisiología , Control Biológico de Vectores , Animales , Femenino , Insectos/fisiología , Israel , Larva/crecimiento & desarrollo , Larva/parasitología , Larva/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Masculino , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/parasitología , Óvulo/crecimiento & desarrollo , Óvulo/parasitología , Conducta Predatoria , Pupa/crecimiento & desarrollo , Pupa/parasitología , Pupa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...