Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38635292

RESUMEN

CONTEXT: Insulin sensitivity (IS) is an important factor in type 2 diabetes (T2D) and can be estimated by many different indices. OBJECTIVE: We aimed to compare the genetic components underlying IS indices obtained from fasting and oral glucose-stimulated plasma glucose and serum insulin levels. METHODS: We computed 21 IS indices, classified as fasting, OGTT0,120 and OGTT0,30,120 indices, using fasting and oral glucose tolerance test (OGTT) data in two cohorts. We used data from a family cohort (n=313) to estimate the heritability and the genetic and phenotypic correlations of IS indices. The population cohort, Inter99 (n=5,343), was used to test for associations between IS indices and 426 genetic variants known to be associated with T2D. RESULTS: Heritability estimates of IS indices ranged between 19% and 38%. Fasting and OGTT0,30,120 indices had high genetic (ρG) and phenotypic (ρP) pairwise correlations (ρG and ρP: 0.88 to 1) The OGTT0,120 indices displayed a wide range of pairwise correlations (ρG: 0.17-1.00 and ρP: 0.13-0.97). We identified statistically significant associations between IS indices and established T2D-associated variants. The PPARG rs11709077 was associated only with fasting indices, and PIK3R rs4976033 only with OGTT0,30,120 indices. The variants in FAM63A/MINDY1, GCK, C2CD4A/B, and FTO loci were associated only with OGTT0,120 indices. CONCLUSION: Even though the IS indices mostly share a common genetic background, notable differences emerged between OGTT0,120 indices. The fasting and OGTT based indices have distinct associations with T2D risk variants. This work provides a basis for future large-scale genetic investigations into the differences between IS indices.

2.
Commun Med (Lond) ; 4(1): 50, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493237

RESUMEN

BACKGROUND: The emerging use of biomarkers in research and tailored care introduces a need for information about the association between biomarkers and basic demographics and lifestyle factors revealing expectable concentrations in healthy individuals while considering general demographic differences. METHODS: A selection of 47 biomarkers, including markers of inflammation and vascular stress, were measured in plasma samples from 9876 Danish Blood Donor Study participants. Using regression models, we examined the association between biomarkers and sex, age, Body Mass Index (BMI), and smoking. RESULTS: Here we show that concentrations of inflammation and vascular stress biomarkers generally increase with higher age, BMI, and smoking. Sex-specific effects are observed for multiple biomarkers. CONCLUSION: This study provides comprehensive information on concentrations of 47 plasma biomarkers in healthy individuals. The study emphasizes that knowledge about biomarker concentrations in healthy individuals is critical for improved understanding of disease pathology and for tailored care and decision support tools.


Blood-based biomarkers are circulating molecules that can help to indicate health or disease. Biomarker levels may vary depending on demographic and lifestyle factors such as age, sex, smoking status, and body mass index. Here, we examine the effects of these demographic and lifestyle factors on levels of biomarkers related to activation of the immune system and cardiovascular stress. Measurements of 47 different proteins were performed on blood samples from nearly 10,000 healthy Danish blood donors. Measurement data were linked with questionnaire data to assess effects of lifestyle. We found that immune activation and vascular stress generally increased with age, BMI, and smoking. As these measurements are from healthy blood donors they can serve as a reference for expectable effects and inflammation levels in healthy individuals. Knowledge about the healthy state is important for understanding disease progression and optimizing care.

3.
Nature ; 627(8003): 347-357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38374256

RESUMEN

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Asunto(s)
Diabetes Mellitus Tipo 2 , Progresión de la Enfermedad , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Adipocitos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/clasificación , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/genética , Células Endoteliales/metabolismo , Células Enteroendocrinas , Epigenómica , Predisposición Genética a la Enfermedad/genética , Islotes Pancreáticos/metabolismo , Herencia Multifactorial/genética , Enfermedad Arterial Periférica/complicaciones , Enfermedad Arterial Periférica/genética , Análisis de la Célula Individual
4.
Nat Commun ; 15(1): 888, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291025

RESUMEN

To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases.


Asunto(s)
Glándula Tiroides , Tiroxina , Humanos , Glándula Tiroides/metabolismo , Tiroxina/metabolismo , Estudio de Asociación del Genoma Completo , Triyodotironina/metabolismo , Tirotropina/metabolismo
5.
BMJ Open ; 14(1): e078501, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286704

RESUMEN

INTRODUCTION: The population-based Inter99 cohort has contributed extensively to our understanding of effects of a systematic screening and lifestyle intervention, as well as the multifactorial aetiology of type 2 diabetes (T2D) and cardiovascular disease. To understand causes, trajectories and patterns of early and overt cardiometabolic disease manifestations, we will perform a combined clinical deep phenotyping and registry follow-up study of the now 50-80 years old Inter99 participants. METHODS AND ANALYSIS: The Inter99 cohort comprises individuals aged 30-60 years, who lived in a representative geographical area of greater Copenhagen, Denmark, in 1999. Age-stratified and sex-stratified random subgroups were invited to participate in either a lifestyle intervention (N=13 016) or questionnaires (N=5264), while the rest served as a reference population (N=43 021). Of the 13 016 individuals assigned to the lifestyle intervention group, 6784 (52%) accepted participation in a baseline health examination in 1999, including screening for cardiovascular risk factors and prediabetic conditions. In total, 6004 eligible participants, who participated in the baseline examination, will be invited to participate in the deep phenotyping 20-year follow-up clinical examination including measurements of anthropometry, blood pressure, arterial stiffness, cardiometabolic biomarkers, coronary artery calcification, heart rate variability, heart rhythm, liver stiffness, fundus characteristics, muscle strength and mass, as well as health and lifestyle questionnaires. In a subsample, 10-day monitoring of diet, physical activity and continuous glucose measurements will be performed. Fasting blood, urine and faecal samples to be stored in a biobank. The established database will form the basis of multiple analyses. A main purpose is to investigate whether low birth weight independent of genetics, lifestyle and glucose tolerance predicts later common T2D cardiometabolic comorbidities. ETHICS AND DISSEMINATION: The study was approved by the Medical Ethics Committee, Capital Region, Denmark (H-20076231) and by the Danish Data Protection Agency through the Capital Region of Denmark's registration system (P-2020-1074). Informed consent will be obtained before examinations. Findings will be disseminated in peer-reviewed journals, at conferences and via presentations to stakeholders, including patients and public health policymakers. TRIAL REGISTRATION NUMBER: NCT05166447.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Diabetes Mellitus Tipo 2/epidemiología , Estudios de Seguimiento , Enfermedades Cardiovasculares/prevención & control , Sistema de Registros , Glucosa
6.
Eur J Hum Genet ; 32(2): 215-223, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37903942

RESUMEN

Perturbation of lipid homoeostasis is a major risk factor for cardiovascular disease (CVD), the leading cause of death worldwide. We aimed to identify genetic variants affecting lipid levels, and thereby risk of CVD, in Greenlanders. Genome-wide association studies (GWAS) of six blood lipids, triglycerides, LDL-cholesterol, HDL-cholesterol, total cholesterol, as well as apolipoproteins A1 and B, were performed in up to 4473 Greenlanders. For genome-wide significant variants, we also tested for associations with additional traits, including CVD events. We identified 11 genome-wide significant loci associated with lipid traits. Most of these loci were already known in Europeans, however, we found a potential causal variant near PCSK9 (rs12117661), which was independent of the known PCSK9 loss-of-function variant (rs11491147). rs12117661 was associated with lower LDL-cholesterol (ßSD(SE) = -0.22 (0.03), p = 6.5 × 10-12) and total cholesterol (-0.17 (0.03), p = 1.1 × 10-8) in the Greenlandic study population. Similar associations were observed in Europeans from the UK Biobank, where the variant was also associated with a lower risk of CVD outcomes. Moreover, rs12117661 was a top eQTL for PCSK9 across tissues in European data from the GTEx portal, and was located in a predicted regulatory element, supporting a possible causal impact on PCSK9 expression. Combined, the 11 GWAS signals explained up to 16.3% of the variance of the lipid traits. This suggests that the genetic architecture of lipid levels in Greenlanders is different from Europeans, with fewer variants explaining the variance.


Asunto(s)
Enfermedades Cardiovasculares , Estudio de Asociación del Genoma Completo , Humanos , Proproteína Convertasa 9/genética , Groenlandia , Triglicéridos/genética , Lípidos/genética , HDL-Colesterol , LDL-Colesterol/genética , LDL-Colesterol/metabolismo , Enfermedades Cardiovasculares/genética , Polimorfismo de Nucleótido Simple
7.
Heart ; 110(9): 644-649, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38016806

RESUMEN

BACKGROUND: The relationship between combined genetic predisposition and lifestyle and the risk of incident atrial fibrillation (AF) is unclear. Therefore, we aimed to assess a possible interaction between lifestyle and genetics on AF risk. METHODS: We included AF cases and a randomly drawn subcohort of 4040 participants from the Danish Diet, Cancer and Health cohort. Lifestyle risk factors were assessed, a score was calculated, and participants were categorised as having a poor, intermediate, or ideal lifestyle. We calculated a genetic risk score comprising 142 variants, and categorised participants into low (quintile 1), intermediate (quintiles 2-4) or high (quintile 5) genetic risk of AF. RESULTS: 3094 AF cases occurred during a median follow-up of 12.9 years. Regardless of genetic risk, incidence rates per 1000 person-years were gradually higher with worse lifestyle. For participants with high genetic risk, the incidence rates of AF per 1000 person-years were 5.0 (95% CI 3.4 to 7.3) among individuals with ideal lifestyle, 6.6 (95% CI 5.4 to 8.1) among those with intermediate lifestyle and 10.4 (95% CI 9.2 to 11.8) among participants with poor lifestyle. On an additive scale, there was a positive statistically significant interaction between genetic risk and lifestyle (relative excess risk due to interaction=0.86, 95% CI 0.68 to 1.03, p<0.001). CONCLUSIONS: The rates of AF increased gradually with worse lifestyle within each category of genetic risk. We found a positive interaction on an additive scale between genetic risk and lifestyle, suggesting that risk factor modification is especially important in individuals with a high genetic risk of AF.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/epidemiología , Fibrilación Atrial/genética , Incidencia , Factores de Riesgo , Estilo de Vida , Dieta
8.
Eur Respir J ; 63(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38097206

RESUMEN

BACKGROUND: Preserved ratio impaired spirometry (PRISm) is defined as a forced expiratory volume in 1 s (FEV1) <80% predicted and FEV1/forced vital capacity ≥0.70. PRISm is associated with respiratory symptoms and comorbidities. Our objective was to discover novel genetic signals for PRISm and see if they provide insight into the pathogenesis of PRISm and associated comorbidities. METHODS: We undertook a genome-wide association study (GWAS) of PRISm in UK Biobank participants (Stage 1), and selected single nucleotide polymorphisms (SNPs) reaching genome-wide significance for replication in 13 cohorts (Stage 2). A combined meta-analysis of Stage 1 and Stage 2 was done to determine top SNPs. We used cross-trait linkage disequilibrium score regression to estimate genome-wide genetic correlation between PRISm and pulmonary and extrapulmonary traits. Phenome-wide association studies of top SNPs were performed. RESULTS: 22 signals reached significance in the joint meta-analysis, including four signals novel for lung function. A strong genome-wide genetic correlation (rg) between PRISm and spirometric COPD (rg=0.62, p<0.001) was observed, and genetic correlation with type 2 diabetes (rg=0.12, p=0.007). Phenome-wide association studies showed that 18 of 22 signals were associated with diabetic traits and seven with blood pressure traits. CONCLUSION: This is the first GWAS to successfully identify SNPs associated with PRISm. Four of the signals, rs7652391 (nearest gene MECOM), rs9431040 (HLX), rs62018863 (TMEM114) and rs185937162 (HLA-B), have not been described in association with lung function before, demonstrating the utility of using different lung function phenotypes in GWAS. Genetic factors associated with PRISm are strongly correlated with risk of both other lung diseases and extrapulmonary comorbidity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Estudio de Asociación del Genoma Completo , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , Diabetes Mellitus Tipo 2/genética , Pulmón , Volumen Espiratorio Forzado/genética , Espirometría , Capacidad Vital
10.
Am J Physiol Endocrinol Metab ; 325(5): E491-E499, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729024

RESUMEN

Biological mechanisms to promote dietary balance remain unclear. Fibroblast growth factor 21 (FGF21) has been suggested to contribute to such potential regulation considering that FGF21 1) is genetically associated with carbohydrate/sugar and protein intake in opposite directions, 2) is secreted after sugar ingestion and protein restriction, and 3) pharmacologically reduces sugar and increases protein intake in rodents. To gain insight of the nature of this potential regulation, we aimed to study macronutrient interactions in the secretory regulation of FGF21 in healthy humans. We conducted a randomized, double-blinded, crossover meal study (NCT05061485), wherein healthy volunteers consumed a sucrose drink, a sucrose + protein drink, and a sucrose + fat drink (matched sucrose content), and compared postprandial FGF21 responses between the three macronutrient combinations. Protein suppressed the sucrose-induced FGF21 secretion [incremental area under the curve (iAUC) for sucrose 484 ± 127 vs. sucrose + protein -35 ± 49 pg/mL × h, P < 0.001]. The same could not be demonstrated for fat (iAUC 319 ± 102 pg/mL × h, P = 203 for sucrose + fat vs. sucrose). We found no indications that regulators of glycemic homeostasis could explain this effect. This indicates that FGF21 responds to disproportionate intake of sucrose relative to protein acutely within a meal, and that protein outweighs sucrose in FGF21 regulation. Together with previous findings, our results suggests that FGF21 might act to promote macronutrient balance and sufficient protein intake.NEW & NOTEWORTHY Here we test the interactions between sugar, protein, and fat in human FGF21 regulation and demonstrate that protein, but not fat, suppresses sugar-induced FGF21 secretion. This indicates that protein outweighs the effects of sugar in the secretory regulation of FGF21, and could suggest that the nutrient-specific appetite-regulatory actions of FGF21 might prioritize ensuring sufficient protein intake over limiting sugar intake.


Asunto(s)
Dieta , Factores de Crecimiento de Fibroblastos , Humanos , Factores de Crecimiento de Fibroblastos/metabolismo , Sacarosa/farmacología , Azúcares , Periodo Posprandial
11.
Antioxidants (Basel) ; 12(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37627608

RESUMEN

Bilirubin is the end product of heme catabolism, mainly produced by the breakdown of mature red blood cells. Due to its anti-inflammatory, antioxidant, antidiabetic, and antilipemic properties, circulating bilirubin concentrations are inversely associated with the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality in adults. Some genetic loci associated with circulating bilirubin concentrations have been identified by genome-wide association studies in adults. We aimed to examine the relationship between circulating bilirubin, cardiometabolic risk factors, and inflammation in children and adolescents and the genetic architecture of plasma bilirubin concentrations. We measured fasting plasma bilirubin, cardiometabolic risk factors, and inflammatory markers in a sample of Danish children and adolescents with overweight or obesity (n = 1530) and in a population-based sample (n = 1820) of Danish children and adolescents. Linear and logistic regression analyses were performed to analyze the associations between bilirubin, cardiometabolic risk factors, and inflammatory markers. A genome-wide association study (GWAS) of fasting plasma concentrations of bilirubin was performed in children and adolescents with overweight or obesity and in a population-based sample. Bilirubin is associated inversely and significantly with a number of cardiometabolic risk factors, including body mass index (BMI) standard deviation scores (SDS), waist circumference, high-sensitivity C-reactive protein (hs-CRP), homeostatic model assessment for insulin resistance (HOMA-IR), hemoglobin A1c (HbA1c), low-density lipoprotein cholesterol (LDL-C), triglycerides, and the majority of measured inflammatory markers. In contrast, bilirubin was positively associated with fasting plasma concentrations of alanine transaminase (ALT), high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SDS), and the inflammatory markers GH, PTX3, THBS2, TNFRSF9, PGF, PAPPA, GT, CCL23, CX3CL1, SCF, and TRANCE. The GWAS showed that two loci were positively associated with plasma bilirubin concentrations at a p-value threshold of <5 × 10-8 (rs76999922: ß = -0.65 SD; p = 4.3 × 10-8, and rs887829: ß = 0.78 SD; p = 2.9 × 10-247). Approximately 25% of the variance in plasma bilirubin concentration was explained by rs887829. The rs887829 was not significantly associated with any of the mentioned cardiometabolic risk factors except for hs-CRP. Our findings suggest that plasma concentrations of bilirubin non-causally associates with cardiometabolic risk factors in children and adolescents.

12.
Int J Obes (Lond) ; 47(11): 1143-1151, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37653071

RESUMEN

BACKGROUND/OBJECTIVES: After Roux-en-Y gastric bypass (RYGB) a subset of patients never obtain excess BMI loss (EBMIL) > 50% and are categorized as having primary weight loss (WL) failure. We hypothesized that postprandial concentrations of glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) would be lower in patients with primary WL failure compared with patients with successfully maintained WL. Furthermore, that inhibition of gut hormone secretions would increase ad libitum food intake less in patients with primary WL failure. SUBJECTS/METHODS: Twenty women with primary WL failure (LowEBMIL < 50%) were individually matched to twenty women with successful WL (HighEBMIL > 60%) on age, preoperative BMI and time from RYGB. On separate days performed in a random order, patient-blinded subcutaneous injections of octreotide or saline (placebo) were followed by a fixed breakfast and an ad libitum lunch with blood sampling for appetite regulating hormones and Visual-Analogue-Scale (VAS)-scoring of hunger/satiety. Furthermore, participants underwent gene variant analysis for GLP-1, PYY and their receptors, indirect calorimetry, dual-energy X-ray absorptiometry (DXA)-scans, 4-days at-home food registration and 14-days step counting. RESULTS: On placebo days, postprandial GLP-1, PYY and cholecystokinin (CCK) concentrations were similar between groups after breakfast. Fasting ghrelin was lower in LowEBMIL, but the postprandial suppression was similar. LowEBMIL had lower satiety VAS-scores and less suppression of hunger VAS-scores. Gene variants did not differ between groups. Octreotide diminished GLP-1, PYY, CCK and ghrelin concentrations in both groups. Octreotide did not affect ad libitum food intake in LowEBMIL (-1% [-13, 12], mean [95%CI]), while food intake increased in HighEBMIL (+23% [2,44]). CONCLUSIONS: Primary WL failure after RYGB was not characterized by impaired secretions of appetite regulating gut hormones. Interestingly, inhibition of gut hormone secretions with octreotide only increased food intake in patients with successful WL post-RYGB. Thus, an impaired central anorectic response to gut hormones may contribute to primary WL failure after RYGB.


Asunto(s)
Derivación Gástrica , Hormonas Gastrointestinales , Humanos , Femenino , Ghrelina , Octreótido/farmacología , Péptido YY , Péptido 1 Similar al Glucagón , Colecistoquinina , Ingestión de Alimentos , Pérdida de Peso/fisiología
13.
Diabetologia ; 66(9): 1669-1679, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37303008

RESUMEN

AIMS/HYPOTHESIS: Low birthweight is a risk factor for type 2 diabetes. Most previous studies are based on cross-sectional prevalence data, not designed to study the timing of onset of type 2 diabetes in relation to birthweight. We aimed to examine associations of birthweight with age-specific incidence rate of type 2 diabetes in middle-aged to older adults over two decades. METHODS: Adults aged 30-60 years enrolled in the Danish Inter99 cohort in 1999-2001 (baseline examination), with information on birthweight from original birth records from 1939-1971 and without diabetes at baseline, were eligible. Birth records were linked with individual-level data on age at diabetes diagnosis and key covariates. Incidence rates of type 2 diabetes as a function of age, sex and birthweight were modelled using Poisson regression, adjusting for prematurity status at birth, parity, polygenic scores for birthweight and type 2 diabetes, maternal and paternal diabetes history, socioeconomic status and adult BMI. RESULTS: In 4590 participants there were 492 incident type 2 diabetes cases during a mean follow-up of 19 years. Type 2 diabetes incidence rate increased with age, was higher in male participants, and decreased with increasing birthweight (incidence rate ratio [95% CI per 1 kg increase in birthweight] 0.60 [0.48, 0.75]). The inverse association of birthweight with type 2 diabetes incidence was statistically significant across all models and in sensitivity analysis. CONCLUSIONS/INTERPRETATION: A lower birthweight was associated with increased risk of developing type 2 diabetes independent of adult BMI and genetic risk of type 2 diabetes and birthweight.


Asunto(s)
Diabetes Mellitus Tipo 2 , Recién Nacido , Embarazo , Femenino , Persona de Mediana Edad , Masculino , Humanos , Anciano , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Peso al Nacer/genética , Incidencia , Predisposición Genética a la Enfermedad , Índice de Masa Corporal , Estudios Transversales
14.
J Clin Endocrinol Metab ; 108(11): 2821-2833, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37235780

RESUMEN

CONTEXT: Lost glucagon-like peptide 1 receptor (GLP-1R) function affects human physiology. OBJECTIVE: This work aimed to identify coding nonsynonymous GLP1R variants in Danish individuals to link their in vitro phenotypes and clinical phenotypic associations. METHODS: We sequenced GLP1R in 8642 Danish individuals with type 2 diabetes or normal glucose tolerance and examined the ability of nonsynonymous variants to bind GLP-1 and to signal in transfected cells via cyclic adenosine monophosphate (cAMP) formation and ß-arrestin recruitment. We performed a cross-sectional study between the burden of loss-of-signaling (LoS) variants and cardiometabolic phenotypes in 2930 patients with type 2 diabetes and 5712 participants in a population-based cohort. Furthermore, we studied the association between cardiometabolic phenotypes and the burden of the LoS variants and 60 partly overlapping predicted loss-of-function (pLoF) GLP1R variants found in 330 566 unrelated White exome-sequenced participants in the UK Biobank cohort. RESULTS: We identified 36 nonsynonymous variants in GLP1R, of which 10 had a statistically significant loss in GLP-1-induced cAMP signaling compared to wild-type. However, no association was observed between the LoS variants and type 2 diabetes, although LoS variant carriers had a minor increased fasting plasma glucose level. Moreover, pLoF variants from the UK Biobank also did not reveal substantial cardiometabolic associations, despite a small effect on glycated hemoglobin A1c. CONCLUSION: Since no homozygous LoS nor pLoF variants were identified and heterozygous carriers had similar cardiometabolic phenotype as noncarriers, we conclude that GLP-1R may be of particular importance in human physiology, due to a potential evolutionary intolerance of harmful homozygous GLP1R variants.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Estudios Transversales , Péptido 1 Similar al Glucagón/metabolismo , Fenotipo
15.
Liver Int ; 43(8): 1772-1782, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37208954

RESUMEN

BACKGROUND & AIMS: Genome-wide association studies have identified steatogenic variants that also showed pleiotropic effects on cardiometabolic traits in adults. We investigated the effect of eight previously reported genome-wide significant steatogenic variants, individually and combined in a weighted genetic risk score (GRS), on liver and cardiometabolic traits, and the predictive ability of the GRS for hepatic steatosis in children and adolescents. APPROACH & RESULTS: Children and adolescents with overweight (including obesity) from an obesity clinic group (n = 1768) and a population-based group (n = 1890) were included. Cardiometabolic risk outcomes and genotypes were obtained. Liver fat was quantified using 1 H-MRS in a subset of 727 participants. Variants in PNPLA3, TM6SF2, GPAM and TRIB1 were associated with higher liver fat (p < .05) and with distinct patterns of plasma lipids. The GRS was associated with higher liver fat content, plasma concentrations of alanine transaminase (ALT), aspartate aminotransferase (AST) and favourable plasma lipid levels. The GRS was associated with higher prevalence of hepatic steatosis (defined as liver fat ≥5.0%) (odds ratio per 1-SD unit: 2.17, p = 9.7E-10). A prediction model for hepatic steatosis including GRS alone yielded an area under the curve (AUC) of 0.78 (95% CI 0.76-0.81). Combining the GRS with clinical measures (waist-to-height ratio [WHtR] SDS, ALT, and HOMA-IR) increased the AUC up to 0.86 (95% CI 0.84-0.88). CONCLUSIONS: The genetic predisposition for liver fat accumulation conferred risk of hepatic steatosis in children and adolescents. The liver fat GRS has potential clinical utility for risk stratification.


Asunto(s)
Enfermedades Cardiovasculares , Hígado Graso , Humanos , Adulto , Adolescente , Niño , Estudio de Asociación del Genoma Completo , Hígado , Factores de Riesgo , Hígado Graso/epidemiología , Hígado Graso/genética , Obesidad , Lípidos , Proteínas Serina-Treonina Quinasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética
16.
medRxiv ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37090505

RESUMEN

Patients with type 2 diabetes vary in their response to currently available therapeutic agents (including GLP-1 receptor agonists) leading to suboptimal glycemic control and increased risk of complications. We show that human carriers of hypomorphic T2D-risk alleles in the gene encoding peptidyl-glycine alpha-amidating monooxygenase (PAM), as well as Pam-knockout mice, display increased resistance to GLP-1 in vivo. Pam inactivation in mice leads to reduced gastric GLP-1R expression and faster gastric emptying: this persists during GLP-1R agonist treatment and is rescued when GLP-1R activity is antagonized, indicating resistance to GLP-1's gastric slowing properties. Meta-analysis of human data from studies examining GLP-1R agonist response (including RCTs) reveals a relative loss of 44% and 20% of glucose lowering (measured by glycated hemoglobin) in individuals with hypomorphic PAM alleles p.S539W and p.D536G treated with GLP-1R agonist. Genetic variation in PAM has effects on incretin signaling that alters response to medication used commonly for treatment of T2D.

17.
Mol Genet Metab Rep ; 35: 100972, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37008541

RESUMEN

Background: Functionally disruptive variants in the glucokinase gene (GCK) cause a form of mild non-progressive hyperglycemia, which does not require pharmacological treatment. A substantial proportion of patients with type 2 diabetes (T2D) carry GCK variants. We aimed to investigate whether carriers of rare GCK variants diagnosed with T2D have a glycemic phenotype and treatment response consistent with GCK-diabetes. Methods: Eight patients diagnosed with T2D from the Danish DD2 cohort who had previously undergone sequencing of GCK participated. Clinical examinations at baseline included an oral glucose tolerance test and continuous glucose monitoring. Carriers with a glycemic phenotype consistent with GCK-diabetes took part in a three-month treatment withdrawal. Results: Carriers of pathogenic and likely pathogenic variants had lower median fasting glucose and C-peptide levels compared to carriers of variants of uncertain significance and benign variants (median fasting glucose: 7.3 (interquartile range: 0.4) mmol/l vs. 9.5 (1.6) mmol/l, p = 0.04; median fasting C-peptide 902 (85) pmol/l vs. 1535 (295) pmol/l, p = 0.03). Four participants who discontinued metformin treatment and one diet-treated participant were reevaluated after three months. There was no deterioration of HbA1c or fasting glucose (median baseline HbA1c: 49 (3) vs. 51 (6) mmol/mol after three months, p = 0.4; median baseline fasting glucose: 7.3 (0.4) mmol/l vs. 7.0 (0.6) mmol/l after three months, p = 0.5). Participants did not consistently fulfill best practice guidelines for GCK screening nor clinical criteria for monogenic diabetes. Discussion: Carriers of pathogenic or likely pathogenic GCK variants identified by unselected screening in T2D should be reported, as they have a glycemic phenotype and treatment response consistent with GCK-diabetes. Variants of uncertain significance should be interpreted with care. Systematic genetic screening of patients with common T2D receiving routine care can lead to the identification and precise care of patients with misclassified GCK-diabetes who are not identifiable through common genetic screening criteria.

18.
medRxiv ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034649

RESUMEN

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7% non-European ancestry), including 428,452 T2D cases. We identify 1,289 independent association signals at genome-wide significance (P<5×10-8) that map to 611 loci, of which 145 loci are previously unreported. We define eight non-overlapping clusters of T2D signals characterised by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial, and enteroendocrine cells. We build cluster-specific partitioned genetic risk scores (GRS) in an additional 137,559 individuals of diverse ancestry, including 10,159 T2D cases, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned GRS are more strongly associated with coronary artery disease and end-stage diabetic nephropathy than an overall T2D GRS across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings demonstrate the value of integrating multi-ancestry GWAS with single-cell epigenomics to disentangle the aetiological heterogeneity driving the development and progression of T2D, which may offer a route to optimise global access to genetically-informed diabetes care.

19.
Int J Circumpolar Health ; 82(1): 2191406, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36944026

RESUMEN

The aim of this study was to examine the effect of diabetes and the diabetogenic TBC1D4 variant on kidney function in Greenland in a population-based setting. Health survey data and TBC1D4 genotypes from 5,336 Greenlanders were used to estimate odds ratios (ORs) of albuminuria (>30 mg/g creatinine) and chronic kidney disease (CKD, eGFR <60 ml/min/1.73m2), comparing individuals with and without diabetes, including the effect of TBC1D4 variant. Of the 3,909 participants with complete data, 9.3% had diabetes. Albuminuria was found in 27.6% and 9.5% and CKD was found in 10.8% and 6.3% among those with and without diabetes, respectively. Diabetes was cross-sectionally associated with an increased risk of albuminuria (OR (95% CI) = 2.37 (1.69,3.33); p < 0.001) and the TBC1D4 variant protected against albuminuria (OR (95% CI) = 0.44 (0.22,0.90); p = 0.02) in a multivariable model. Neither diabetes nor the TBC1D4 variant significantly associated with CKD. The presence/absence of diabetes did not predict changes in eGFR and UACR in longitudinal analyses. Diabetes conferred an increased risk of albuminuria, and the TBC1D4 variant was associated with a decreased risk of albuminuria, but neither was associated with CKD. The potential renoprotective association of the TBC1D4 variant on albuminuria calls for further studies.


Asunto(s)
Diabetes Mellitus , Proteínas Activadoras de GTPasa , Insuficiencia Renal Crónica , Humanos , Albuminuria/complicaciones , Diabetes Mellitus/genética , Groenlandia/epidemiología , Proteínas Activadoras de GTPasa/genética , Inuk/genética , Riñón , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/complicaciones
20.
Diabetes Care ; 46(5): 985-992, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36809463

RESUMEN

OBJECTIVE: The association between FTO rs9939609 and obesity is modified by physical activity (PA) and/or insulin sensitivity (IS). We aimed to assess whether these modifications are independent, to assess whether PA and/or IS modify the association between rs9939609 and cardiometabolic traits, and to elucidate underlying mechanisms. RESEARCH DESIGN AND METHODS: Genetic association analyses comprised up to 19,585 individuals. PA was self-reported, and IS was defined based on inverted HOMA insulin resistance index. Functional analyses were performed in muscle biopsies from 140 men and in cultured muscle cells. RESULTS: The BMI-increasing effect of the FTO rs9939609 A allele was attenuated by 47% with high PA (ß [SE], -0.32 [0.10] kg/m2, P = 0.0013) and by 51% with high IS (-0.31 [0.09] kg/m2, P = 0.00028). Interestingly, these interactions were essentially independent (PA, -0.20 [0.09] kg/m2, P = 0.023; IS, -0.28 [0.09] kg/m2, P = 0.0011). The rs9939609 A allele was also associated with higher all-cause mortality and certain cardiometabolic outcomes (hazard ratio, 1.07-1.20, P > 0.04), and these effects tended to be weakened by greater PA and IS. Moreover, the rs9939609 A allele was associated with higher expression of FTO in skeletal muscle tissue (0.03 [0.01], P = 0.011), and in skeletal muscle cells, we identified a physical interaction between the FTO promoter and an enhancer region encompassing rs9939609. CONCLUSIONS: Greater PA and IS independently reduced the effect of rs9939609 on obesity. These effects might be mediated through altered expression of FTO in skeletal muscle. Our results indicated that PA and/or other means of increasing insulin sensitivity could counteract FTO-related genetic predisposition to obesity.


Asunto(s)
Enfermedades Cardiovasculares , Hiperinsulinismo , Resistencia a la Insulina , Masculino , Humanos , Resistencia a la Insulina/genética , Índice de Masa Corporal , Obesidad/genética , Obesidad/metabolismo , Ejercicio Físico , Predisposición Genética a la Enfermedad , Insulina/genética , Insulina Regular Humana , Polimorfismo de Nucleótido Simple , Genotipo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...