Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 540(7632): 266-269, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27919075

RESUMEN

Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in ß-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing ß-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on ß-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in ß-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the ß-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.


Asunto(s)
Agricultura , Biodiversidad , Pradera , Actividades Humanas , Animales , Artrópodos , Aves , Bryopsida , Quirópteros , Conservación de los Recursos Naturales , Conjuntos de Datos como Asunto , Cadena Alimentaria , Hongos , Alemania , Líquenes , Plantas , Microbiología del Suelo , Especificidad de la Especie
2.
Ecology ; 96(3): 788-99, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26236874

RESUMEN

It has long been recognized that plant species and soil microorganisms. are tightly linked, but understanding how different species vary in their effects on soil is currently limited. In this study, we identified those. plant characteristics (identity, specific functional traits, or resource acquisition strategy) that were the best predictors of nitrification and denitrification processes. Ten plant populations representing eight species collected from three European grassland sites were chosen for their contrasting plant trait values and resource acquisition strategies. For each individual plant, leaf and root traits and the associated potential microbial activities (i.e., potential denitrification rate [DEA], maximal nitrification rate [NEA], and NH4+ affinity of the microbial community [NHScom]) were measured at two fertilization levels under controlled growth conditions. Plant traits were powerful predictors of plant-microbe interactions, but relevant plant traits differed in relation to the microbial function studied. Whereas denitrification was linked to the relative growth rate of plants, nitrification was strongly correlated to root trait characteristics (specific root length, root nitrogen concentration, and plant affinity for NH4+) linked to plant N cycling. The leaf economics spectrum (LES) that commonly serves as an indicator of resource acquisition strategies was not correlated to microbial activity. These results suggest that the LES alone is not a good predictor of microbial activity, whereas root traits appeared critical in understanding plant-microbe interactions.


Asunto(s)
Achillea/fisiología , Nitrógeno/metabolismo , Poaceae/fisiología , Microbiología del Suelo , Austria , Desnitrificación , Inglaterra , Francia , Nitrificación , Suelo/química
3.
Ecol Lett ; 18(8): 834-843, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26096863

RESUMEN

Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.


Asunto(s)
Agricultura/métodos , Biodiversidad , Pradera , Alemania , Modelos Lineales , Suelo/química
4.
PLoS One ; 10(5): e0126140, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25938417

RESUMEN

Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that - despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees - suggesting the action of associational resistance processes - and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores.


Asunto(s)
Ecosistema , Fagus , Herbivoria , Hojas de la Planta , Árboles , Biodiversidad , Bosques , Alemania
5.
Ann Bot ; 115(1): 107-15, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25471096

RESUMEN

BACKGROUNDS AND AIMS: Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species' coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies. METHODS: Root uptake of [Formula: see text] and [Formula: see text], and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions. KEY RESULTS: Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for [Formula: see text]. CONCLUSIONS: The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits.


Asunto(s)
Compuestos de Amonio/metabolismo , Nitratos/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Poaceae/fisiología , Austria , Ambiente , Francia , Especificidad de la Especie , Reino Unido
6.
Glob Chang Biol ; 20(5): 1452-60, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24306968

RESUMEN

Predicting the response of species to environmental changes is a great and on-going challenge for ecologists, and this requires a more in-depth understanding of the importance of biotic interactions and the population structuration in the landscape. Using a reciprocal transplantation experiment, we tested the response of five species to an elevational gradient. This was combined to a neighbour removal treatment to test the importance of local adaptation and biotic interactions. The trait studied was performance measured as survival and biomass. Species response varied along the elevational gradient, but with no consistent pattern. Performance of species was influenced by environmental conditions occurring locally at each site, as well as by positive or negative effects of the surrounding vegetation. Indeed, we observed a shift from competition for biomass to facilitation for survival as a response to the increase in environmental stress occurring in the different sites. Unlike previous studies pointing out an increase of stress along the elevation gradient, our results supported a stress gradient related to water availability, which was not strictly parallel to the elevational gradient. For three of our species, we observed a greater biomass production for the population coming from the site where the species was dominant (central population) compared to population sampled at the limit of the distribution (marginal population). Nevertheless, we did not observe any pattern of local adaptation that could indicate adaptation of populations to a particular habitat. Altogether, our results highlighted the great ability of plant species to cope with environmental changes, with no local adaptation and great variability in response to local conditions. Our study confirms the importance of taking into account biotic interactions and population structure occurring at local scale in the prediction of communities' responses to global environmental changes.


Asunto(s)
Cambio Climático , Cyperaceae/fisiología , Ambiente , Poaceae/fisiología , Adaptación Fisiológica , Altitud , Biomasa , Cyperaceae/crecimiento & desarrollo , Francia , Poaceae/crecimiento & desarrollo , Especificidad de la Especie
7.
Ann Bot ; 106(4): 637-45, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20682576

RESUMEN

BACKGROUND AND AIMS: Functional traits are indicators of plant interactions with their environment and the resource-use strategies of species can be defined through some key functional traits. The importance of genetic variability and phenotypic plasticity in trait variations in response to a common environmental change was investigated in two subalpine species. METHODS: Two species with contrasted resource-use strategies, Dactylis glomerata and Festuca paniculata, were grown along a productivity gradient in a greenhouse experiment. Functional traits of different genotypes were measured to estimate the relative roles of phenotypic plasticity and genetic variability, and to compare their levels of phenotypic plasticity. KEY RESULTS: Trait variability in the field for the two species is more likely to be the result of phenotypic plasticity rather than of genetic differentiation between populations. The exploitative species D. glomerata expressed an overall higher level of phenotypic plasticity compared with the conservative species F. paniculata. In addition to different amplitudes of phenotypic plasticity, the two species differed in their pattern of response for three functional traits relevant to resource use (specific leaf area, leaf dry matter content and leaf nitrogen content). CONCLUSIONS: Functional trait variability was mainly the result of phenotypic plasticity, with the exploitative species showing greater variability. In addition to average trait values, two species with different resource-use strategies differed in their plastic responses to productivity.


Asunto(s)
Dactylis/genética , Festuca/genética , Análisis de Varianza , Dactylis/anatomía & histología , Festuca/anatomía & histología , Variación Genética/genética , Genotipo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...