Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L447-L459, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37529852

RESUMEN

There is growing evidence suggesting that urban pollution has adverse effects on lung health. However, how urban pollution affects alveolar mesenchymal and epithelial stem cell niches remains unknown. This study aimed to determine how complex representative urban atmospheres alter alveolar stem cell niche properties. Mice were placed in an innovative chamber realistically simulating the atmosphere of a megalopolis, or "clean air," for 7 days. Lungs were collected, and fibroblasts and epithelial cells (EpCAM+) were isolated. Proliferative capacities of fibroblasts were tested by population doubling levels (PDL), and microarray analyses were performed. Fibroblasts and EpCAM+ cells from exposed, nonexposed, or naive mice were cocultured in organoid assays to assess the stem cell properties. Collagen deposition (Sirius red), lipofibroblasts (ADRP, COL1A1), myofibroblasts (αSMA), alveolar type 2 cells (AT2, SFTPC+), and alveolar differentiation intermediate cell [ADI, keratin-8-positive (KRT8+)/claudin-4-positive (CLDN4+)] markers were quantified in the lungs. Fibroblasts obtained from mice exposed to urban atmosphere had lower PDL and survival and produced fewer and smaller organoids. Microarray analysis showed a decrease of adipogenesis and an increase of genes associated with fibrosis, suggesting a lipofibroblast to myofibroblast transition. Collagen deposition and myofibroblast number increased in the lungs of urban atmosphere-exposed mice. AT2 number was reduced and associated with an increase in ADI cells KRT8+/CLDN4+. Furthermore, EpCAM+ cells from exposed mice also produced fewer and smaller organoids. In conclusion, urban atmosphere alters alveolar mesenchymal stem cell niche properties by inducing a lipofibroblast to myofibroblast shift. It also results in alveolar epithelial dysfunction and a fibrotic-like phenotype.NEW & NOTEWORTHY Urban pollution is known to have major adverse effects on lung health. To assess the effect of pollution on alveolar regeneration, we exposed adult mice to a simulated high-pollution urban atmosphere, using an innovative CESAM simulation chamber (Multiphase Atmospheric Experimental Simulation Chamber, https://cesam.cnrs.fr/). We demonstrated that urban atmosphere alters alveolar mesenchymal stem cell niche properties by inducing a lipofibroblast to myofibroblast shift and induces alveolar epithelial dysfunction.


Asunto(s)
Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/patología , Molécula de Adhesión Celular Epitelial/metabolismo , Células Epiteliales Alveolares/metabolismo , Pulmón/metabolismo , Diferenciación Celular , Células Madre , Colágeno/metabolismo
2.
Part Fibre Toxicol ; 19(1): 41, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35706036

RESUMEN

BACKGROUND: Emerging data indicate that prenatal exposure to air pollution may lead to higher susceptibility to several non-communicable diseases. Limited research has been conducted due to difficulties in modelling realistic air pollution exposure. In this study, pregnant mice were exposed from gestational day 10-17 to an atmosphere representative of a 2017 pollution event in Beijing, China. Intestinal homeostasis and microbiota were assessed in both male and female offspring during the suckling-to-weaning transition. RESULTS: Sex-specific differences were observed in progeny of gestationally-exposed mice. In utero exposed males exhibited decreased villus and crypt length, vacuolation abnormalities, and lower levels of tight junction protein ZO-1 in ileum. They showed an upregulation of absorptive cell markers and a downregulation of neonatal markers in colon. Cecum of in utero exposed male mice also presented a deeply unbalanced inflammatory pattern. By contrast, in utero exposed female mice displayed less severe intestinal alterations, but included dysregulated expression of Lgr5 in colon, Tjp1 in cecum, and Epcam, Car2 and Sis in ileum. Moreover, exposed female mice showed dysbiosis characterized by a decreased weighted UniFrac ß-diversity index, a higher abundance of Bacteroidales and Coriobacteriales orders, and a reduced Firmicutes/Bacteroidetes ratio. CONCLUSION: Prenatal realistic modelling of an urban air pollution event induced sex-specific precocious alterations of structural and immune intestinal development in mice.


Asunto(s)
Contaminación del Aire , Microbiota , Contaminación del Aire/efectos adversos , Animales , Femenino , Mucosa Intestinal/metabolismo , Intestinos , Masculino , Ratones , Embarazo , Destete
3.
Sci Total Environ ; 756: 144129, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33310213

RESUMEN

Trace gas measurements were performed during the LANDEX (the LANDes EXperiment) Episode 1 field campaign in the summer 2017, in one of the largest European maritime pine forests (> 95% Pinus pinaster) located in southwestern France. Efforts have been focused on obtaining a good speciation of 20 major biogenic volatile organic compounds (BVOCs, including pinenes, carenes, terpinenes, linalool, camphene, etc.). This was made possible by the development of a new and specific chromatographic method. In order to assess the role of BVOCs in the local gas phase chemistry budget, their reactivity with the main atmospheric oxidants (hydroxyl radicals (OH), ozone (O3) and nitrate radicals (NO3)) and the corresponding consumption rates were determined. When considering the OH reactivity with BVOCs, isoprene and linalool accounted for 10-47% of the OH depletion during daytime, and monoterpenes for 50-65%, whereas monoterpenes were the main contributors during the night (70-85%). Sesquiterpenes and monoterpenes were the main contributors to the ozone reactivity, especially ß-caryophyllene (30-70%), with a maximum contribution during nighttime. Nighttime nitrate reactivity was predominantly due to monoterpenes (i.e. 90-95%). Five specific groups have been proposed to classify the 19 BVOCs measured in the forest, according to their reactivity with atmospheric oxidants and their concentrations. The total amount of BVOCs consumed under and above the forest canopy was evaluated for 7 BVOCs (i.e. isoprene, α-pinene, ß-pinene, myrcene, limonene + cis-ocimene and Δ3-carene). The reactivity of atmospheric oxidants and BVOCs at a local level are discussed in order to highlight the compounds (BVOCs, other VOCs), the atmospheric oxidants and the main associated reactive processes observed under the canopy of a maritime pine forest.

4.
J Phys Chem A ; 123(44): 9462-9468, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31609621

RESUMEN

Reaction rate constants for the reaction of n-dodecane with hydroxyl radicals were measured as a function of temperature between 283 and 303 K, using the relative rate method in the CESAM chamber (French acronym for "experimental multiphasic atmospheric simulation chamber"). The rate constants obtained at 283, 293, and 303 K are (1.27 ± 0.31) × 10-11, (1.33 ± 0.34) × 10-11, and (1.27 ± 0.40) × 10-11 cm3 molecule-1 s-1, respectively. Rate constants measured were in excellent agreement with the few available data in the literature over the studied temperature range (283-340 K). Rate constants estimated by the structure-activity relationship and transition state theory methods agreed with our experimental data within 14%. From these data combined with previous literature measurement, the following Arrhenius expression, kDDC+OH = (9.77 ± 6.19) × 10-11 × exp[(-595 ± 5580)/T] cm3 molecule-1 s-1, was found to be valid over a temperature range (283-340 K) of the tropospheric interest.

5.
J Phys Chem A ; 122(21): 4854-4860, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29741899

RESUMEN

In order to predict the amount of secondary organic aerosol formed by heterogeneous processing of methylglyoxal, uptake coefficients (γ) and estimates of uptake reversibility are needed. Here, uptake coefficients are extracted from chamber studies involving ammonium sulfate and glycine seed aerosol at high relative humidity (RH ≥ 72%). Methylglyoxal uptake coefficients on prereacted glycine aerosol particles had a strong dependence on RH, increasing from γ = 0.4 × 10-3 to 5.7 × 10-3 between 72 and 99% RH. Continuous methylglyoxal losses were also observed in the presence of aqueous ammonium sulfate at 95% RH (γAS,wet = 3.7 ± 0.8 × 10-3). Methylglyoxal uptake coefficients measured at ≥95% RH are larger than those reported for glyoxal on nonacidified, aqueous aerosol surfaces at 90% RH. Slight curvature in first-order uptake plots suggests that methylglyoxal uptake onto aqueous aerosol surfaces is not entirely irreversible after 20 min. Methylglyoxal uptake by cloud droplets was rapid and largely reversible, approaching equilibrium within the 1 min mixing time of the chamber. PTR-MS measurements showed that each cloud event extracted 3 to 8% of aerosol-phase methylglyoxal and returned it to the gas phase, likely by an oligomer hydrolysis mechanism.

6.
Environ Sci Technol ; 52(7): 4061-4071, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29510022

RESUMEN

Aqueous methylglyoxal chemistry has often been implicated as an important source of oligomers in atmospheric aerosol. Here we report on chemical analysis of brown carbon aerosol particles collected from cloud cycling/photolysis chamber experiments, where gaseous methylglyoxal and methylamine interacted with glycine, ammonium, or methylammonium sulfate seed particles. Eighteen N-containing oligomers were identified in the particulate phase by liquid chromatography/diode array detection/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry. Chemical formulas were determined and, for 6 major oligomer products, MS2 fragmentation spectra were used to propose tentative structures and mechanisms. Electronic absorption spectra were calculated for six tentative product structures by an ab initio second order algebraic-diagrammatic-construction/density functional theory approach. For five structures, matching calculated and measured absorption spectra suggest that they are dominant light-absorbing species at their chromatographic retention times. Detected oligomers incorporated methylglyoxal and amines, as expected, but also pyruvic acid, hydroxyacetone, and significant quantities of acetaldehyde. The finding that ∼80% (by mass) of detected oligomers contained acetaldehyde, a methylglyoxal photolysis product, suggests that daytime methylglyoxal oligomer formation is dominated by radical addition mechanisms involving CH3CO*. These mechanisms are evidently responsible for enhanced browning observed during photolytic cloud events.


Asunto(s)
Nitrógeno , Piruvaldehído , Aerosoles , Cromatografía de Gases y Espectrometría de Masas , Fotólisis
7.
J Phys Chem A ; 121(44): 8348-8358, 2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29035055

RESUMEN

Pyruvic acid is an atmospherically abundant α-keto-acid that degrades efficiently from the troposphere via gas-phase photolysis. To explore conditions relevant to the environment, 2-12 ppm pyruvic acid is irradiated by a solar simulator in the environmental simulation chamber, CESAM. The combination of the long path length available in the chamber and its low surface area to volume ratio allows us to quantitatively examine the quantum yield and photochemical products of pyruvic acid. Such details are new to the literature for the low initial concentrations of pyruvic acid employed here. We determined photolysis quantum yields of ϕobsN2 = 0.84 ± 0.1 in nitrogen and ϕobsAir = 3.2 ± 0.5 in air, which are higher than those reported by previous studies that used higher partial pressures of pyruvic acid. The quantum yield greater than unity in air is due to secondary chemistry, driven by O2, that emerges under the conditions in these experiments. The low concentration of pyruvic acid and the resulting oxygen effect also alter the product distribution such that acetic acid, rather than acetaldehyde, is the primary product in air. These results indicate that tropospheric pyruvic acid may degrade in part via photoinduced mechanisms that are different than previously expected.

8.
J Phys Chem A ; 121(40): 7641-7654, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-28902512

RESUMEN

Aerosol-cloud interaction contributes to the largest uncertainties in the estimation and interpretation of the Earth's changing energy budget. The present study explores experimentally the impacts of water condensation-evaporation events, mimicking processes occurring in atmospheric clouds, on the molecular composition of secondary organic aerosol (SOA) from the photooxidation of methacrolein. A range of on- and off-line mass spectrometry techniques were used to obtain a detailed chemical characterization of SOA formed in control experiments in dry conditions, in triphasic experiments simulating gas-particle-cloud droplet interactions (starting from dry conditions and from 60% relative humidity (RH)), and in bulk aqueous-phase experiments. We observed that cloud events trigger fast SOA formation accompanied by evaporative losses. These evaporative losses decreased SOA concentration in the simulation chamber by 25-32% upon RH increase, while aqueous SOA was found to be metastable and slowly evaporated after cloud dissipation. In the simulation chamber, SOA composition measured with a high-resolution time-of-flight aerosol mass spectrometer, did not change during cloud events compared with high RH conditions (RH > 80%). In all experiments, off-line mass spectrometry techniques emphasize the critical role of 2-methylglyceric acid as a major product of isoprene chemistry, as an important contributor to the total SOA mass (15-20%) and as a key building block of oligomers found in the particulate phase. Interestingly, the comparison between the series of oligomers obtained from experiments performed under different conditions show a markedly different reactivity. In particular, long reaction times at high RH seem to create the conditions for aqueous-phase processing to occur in a more efficient manner than during two relatively short cloud events.

9.
Environ Sci Technol ; 51(13): 7458-7466, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28562016

RESUMEN

The effects of methylglyoxal uptake on the physical and optical properties of aerosol containing amines or ammonium sulfate were determined before and after cloud processing in a temperature- and RH-controlled chamber. The formation of brown carbon was observed upon methylglyoxal addition, detected as an increase in water-soluble organic carbon mass absorption coefficients below 370 nm and as a drop in single-scattering albedo at 450 nm. The imaginary refractive index component k450 reached a maximum value of 0.03 ± 0.009 with aqueous glycine aerosol particles. Browning of solid particles occurred at rates limited by chamber mixing (<1 min), and in liquid particles occurred more gradually, but in all cases occurred much more rapidly than in bulk aqueous studies. Further browning in AS and methylammonium sulfate seeds was triggered by cloud events with chamber lights on, suggesting photosensitized brown carbon formation. Despite these changes in optical aerosol characteristics, increases in dried aerosol mass were rarely observed (<1 µg/m3 in all cases), consistent with previous experiments on methylglyoxal. Under dry, particle-free conditions, methylglyoxal reacted (presumably on chamber walls) with methylamine with a rate constant k = (9 ± 2) × 10-17 cm3 molecule-1 s-1 at 294 K and activation energy Ea = 64 ± 37 kJ/mol.


Asunto(s)
Aerosoles , Compuestos de Amonio , Piruvaldehído , Aminas , Carbono
10.
J Phys Chem A ; 121(18): 3327-3339, 2017 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-28388049

RESUMEN

Aerosol and molecular processing in the atmosphere occurs in a complex and variable environment consisting of multiple phases and interfacial regions. To explore the effects of such conditions on the reactivity of chemical systems, we employ an environmental simulation chamber to investigate the multiphase photolysis of pyruvic acid, which photoreacts in the troposphere in aqueous particles and in the gas phase. Upon irradiation of nebulized pyruvic acid, acetic acid and carbon dioxide are rapidly generated, which is consistent with previous literature on the bulk phase photolysis reactions. Additionally, we identify a new C6 product, zymonic acid, a species that has not previously been reported from pyruvic acid photolysis under any conditions. Its observation here, and corresponding spectroscopic signatures, indicates it could be formed by heterogeneous reactions at the droplet surface. Prior studies of the aqueous photolysis of pyruvic acid have shown that high-molecular-weight compounds are formed via radical reactions; however, they are inhibited by the presence of oxygen, leading to doubt as to whether the chemistry would occur in the atmosphere. Identification of dimethyltartaric acid from the photolysis of multiphase pyruvic acid in air confirms radical polymerization chemistry can compete with oxygen reactions to some extent under aerobic conditions. Evidence of additional polymerization within the particles during irradiation is suggested by the increasing viscosity and organic content of the particles. The implications of multiphase specific processes are then discussed within the broader scope of atmospheric science.

11.
Environ Sci Technol ; 51(1): 192-201, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27966908

RESUMEN

The temperature and concentration dependence of secondary organic aerosol (SOA) yields has been investigated for the first time for the photooxidation of n-dodecane (C12H26) in the presence of NOx in the CESAM chamber (French acronym for "Chamber for Atmospheric Multiphase Experimental Simulation"). Experiments were performed with and without seed aerosol between 283 and 304.5 K. In order to quantify the SOA yields, a new parametrization is proposed to account for organic vapor loss to the chamber walls. Deposition processes were found to impact the aerosol yields by a factor from 1.3 to 1.8 between the lowest and the highest value. As with other photooxidation systems, experiments performed without seed and at low concentration of oxidant showed a lower SOA yield than other seeded experiments. Temperature did not significantly influence SOA formation in this study. This unforeseen behavior indicates that the SOA is dominated by sufficiently low volatility products for which a change in their partitioning due to temperature would not significantly affect the condensed quantities.


Asunto(s)
Compuestos Orgánicos , Temperatura , Aerosoles , Gases , Volatilización
12.
J Phys Chem A ; 116(50): 12189-97, 2012 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23199339

RESUMEN

Aromatic hydrocarbons are important components of polluted ambient air. The reaction of OH radicals with hexamethylbenzene (HMB) is a prototype system to study ipso addition leading eventually to dealkylation. We have investigated the OH + HMB and OD + HMB reactions between 323 and 433 K using a discharge fast-flow reactor coupled to a time-of-flight mass spectrometer with single-photon VUV photoionization (10.54 eV). The H atom abstraction channel has been found to be equal to (13.7 ± 4.4) % at 330 K leading to (11.1 ± 3.6) % at 298 K, higher than predicted by commonly used structure-reactivity relationships. The back dissociation rate constant has also been measured and has been found to be smaller than the rate of other aromatic hydrocarbons, in good agreement with density functional theoretical calculations. The dealkylation channel, leading to pentamethylphenol (PMP) + CH(3), is always found to be the minor channel, estimated inferior to 2% at 298 K.

13.
Environ Sci Technol ; 45(7): 2755-60, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21405079

RESUMEN

Anthropogenic sources release into the troposphere a wide range of volatile organic compounds (VOCs) including aromatic hydrocarbons, whose major sources are believed to be combustion and the evaporation of fossil fuels. An important question is whether there are other sources of aromatics in air. We report here the formation of p-cymene [1-methyl-4-(1-methylethyl) benzene, C6H4(CH3)(C3H7)] from the oxidation of α-pinene by OH, O3, and NO3 at 1 atm in air and 298 K at low (<5%) and high (70%) relative humidities (RH). Loss of α-pinene and the generation of p-cymene were measured using GC-MS. The fractional yields of p-cymene relative to the loss of α-pinene, Δ [p-cymeme]/Δ [α-pinene], were measured to range from (1.6±0.2)×10(-5) for the O3 reaction to (3.0±0.3)×10(-4) for the NO3 reaction in the absence of added water vapor. The yields for the OH and O3 reactions increased by a factor of 4-8 at 70% RH (uncertainties are ±2s). The highest yields at 70% RH for the OH and O3 reactions, ∼15 times higher than for dry conditions, were observed if the walls of the Teflon reaction chamber had been previously exposed to H2SO4 formed from the OH oxidation of SO2. Possible mechanisms of the conversion of α-pinene to p-cymene and the potential importance in the atmosphere are discussed.


Asunto(s)
Contaminantes Atmosféricos/síntesis química , Radical Hidroxilo/química , Monoterpenos/química , Monoterpenos/síntesis química , Óxidos de Nitrógeno/química , Ozono/química , Contaminantes Atmosféricos/análisis , Atmósfera/química , Monoterpenos Bicíclicos , Cimenos , Monoterpenos/análisis , Oxidantes/química , Compuestos Orgánicos Volátiles/síntesis química , Compuestos Orgánicos Volátiles/química
14.
J Phys Chem A ; 111(45): 11506-13, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17958339

RESUMEN

UV (240-370 nm) and IR (3200-1500 cm(-1)) absorption cross-sections of HCHO, HCDO, and DCDO in a bath gas of N(2) at atmospheric pressure and 296 K are reported from simultaneous measurements in the two spectral regions. Cross-sections were placed on an absolute scale through quantitative conversion of formaldehyde to CO and HCOOH by titration with Br atoms, also monitored by FTIR. The integrated UV absorption cross-sections of HCHO, HCDO, and DCDO are equal to within the experimental uncertainty.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...