Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 80: 129124, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36610552

RESUMEN

Insect nicotinic acetylcholine receptors (nAChRs) are a recognized target for insecticide design. In this work, we have identified, from a structure-based approach using molecular modeling tools, ligands with potential selective activity for pests versus pollinators. A high-throughput virtual screening with the Openeye software was performed using a library from the ZINC database, thiacloprid being used as the target structure. The top sixteen molecules were then docked in α6 cockroach and honeybee homomeric nAChRs to check from a theoretical point of view relevant descriptors in favor of pest selectivity. Among the selected molecules, one original sulfonamide compound has afterward been synthesized, together with various analogs. Two compounds of this family have been shown to behave as activators of the cockroach cholinergic synaptic transmission.


Asunto(s)
Cucarachas , Insecticidas , Receptores Nicotínicos , Animales , Insectos , Modelos Moleculares , Insecticidas/farmacología , Sistema Nervioso
2.
Angew Chem Int Ed Engl ; 61(7): e202114862, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34913249

RESUMEN

Efficient drug discovery is based on a concerted effort in optimizing bioactivity and compound properties such as lipophilicity, and is guided by efficiency metrics that reflect both aspects. While conformation-activity relationships and ligand conformational control are known strategies to improve bioactivity, the use of conformer-specific lipophilicities (logp) is much less explored. Here we show how conformer-specific logp values can be obtained from knowledge of the macroscopic logP value, and of the equilibrium constants between the individual species in water and in octanol. This is illustrated with fluorinated amide rotamers, with integration of rotamer 19 F NMR signals as a facile, direct method to obtain logp values. The difference between logp and logP optimization is highlighted, giving rise to a novel avenue for lipophilicity control in drug discovery.


Asunto(s)
Descubrimiento de Drogas , Preparaciones Farmacéuticas/química , Interacciones Hidrofóbicas e Hidrofílicas , Octanoles/química , Agua/química
3.
Chem Sci ; 12(32): 10855-10861, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34447565

RESUMEN

As a non-covalent interaction, halogen bonding is now acknowledged to be useful in all fields where the control of intermolecular recognition plays a pivotal role. Halogen-bond basicity scales allow quantification of the halogen bonding of referential donors with organic functional groups from a thermodynamic point of view. Herein we present the pK BAtI basicity scale to provide the community an overview of halogen-bond acceptor strength towards astatine, the most potent halogen-bond donor element. This experimental scale is erected on the basis of complexation constants measured between astatine monoiodide (AtI) and sixteen selected Lewis bases. It spans over 6 log units and culminates with a value of 5.69 ± 0.32 for N,N,N',N'-tetramethylthiourea. On this scale, the carbon π-bases are the weakest acceptors, the oxygen derivatives cover almost two-thirds of the scale, and sulphur bases exhibit the highest AtI basicity. Regarding the applications of 211At in targeted radionuclide therapy, stronger labelling of carrier agents could be envisaged on the basis of the pK BAtI scale.

4.
Phys Chem Chem Phys ; 23(7): 4064-4074, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33433548

RESUMEN

The ability of organic and inorganic compounds bearing both iodine and astatine atoms to form halogen-bond interactions is theoretically investigated. Upon inclusion of the relativistic spin-orbit interaction, the I-mediated halogen bonds are more affected than the At-mediated ones in many cases. This unusual outcome is disconnected from the behavior of iodine's electrons. The significant decrease of astatine electronegativity with the spin-orbit coupling triggers a redistribution of the electron density, which propagates relativistic effects toward the distant iodine atom. This mechanism can be controlled by introducing suitable substituents and, in particular, strengthened by taking advantage of electron-withdrawing inductive and mesomeric effects. Noticeable relativistic effects can actually be transferred to light atoms properties, e.g., the halogen-bond basicity of bridgehead carbon atoms doubled in propellane derivatives.

5.
RSC Adv ; 11(12): 7107-7114, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35423195

RESUMEN

A direct and efficient regioselective C7-bromination of 4-substituted 1H-indazole has been achieved. Subsequently, a successful palladium-mediated Suzuki-Miyaura reaction of C7-bromo-4-substituted-1H-indazoles with boronic acids has been performed under optimized reaction conditions. A series of new C7 arylated 4-substituted 1H-indazoles was obtained in moderate to good yields.

6.
Beilstein J Org Chem ; 16: 2141-2150, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32952731

RESUMEN

A systematic comparison of lipophilicity modulations upon fluorination of isopropyl, cyclopropyl and 3-oxetanyl substituents, at a single carbon atom, is provided using directly comparable, and easily accessible model compounds. In addition, comparison with relevant linear chain derivatives is provided, as well as lipophilicity changes occurring upon chain extension of acyclic precursors to give cyclopropyl containing compounds. For the compounds investigated, fluorination of the isopropyl substituent led to larger lipophilicity modulation compared to fluorination of the cyclopropyl substituent.

7.
Bioorg Chem ; 103: 104132, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32768743

RESUMEN

Hura crepitans (Euphorbiaceae) is a tree from South America that produces an irritant latex used as a fish poison. A bio-guided fractionation of an ethanolic extract of the latex led to the isolation and structural identification of three known daphnane-type diterpenes (1-3) including huratoxin (1), together with two new analogs (4, 5). Compound 1 was found to exhibit significant and selective cell growth inhibition against the colorectal cancer cell line Caco-2, with morphological modifications suggesting formations mimicking the intestinal crypt architecture. The underlying mechanism of 1 was further investigated, in comparison with 12-O-tetradecanoylphorbol-13-acetate (TPA), revealing two different mechanisms.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Diterpenos/farmacología , Euphorbiaceae/química , Látex/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Teoría Funcional de la Densidad , Diterpenos/química , Diterpenos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
8.
Pestic Biochem Physiol ; 168: 104633, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32711767

RESUMEN

Some quinuclidine benzamide compounds have been found to modulate nicotinic acetylcholine receptors in both mammals and insects. In particular, the quaternarization of 3-amino quinuclidine benzamide derivatives with dichloromethane gave charged N-chloromethylated quinuclidine compounds, disclosing an antagonist profile on homomeric α7 nAChRs. Here, we synthesized and studied the toxicological effect of LMA10233, a quinuclidine-borane complex analogue, the LMA10233, on the pea aphid Acyrthosiphon pisum and found that LMA10233 only exhibit proper toxicity on A. pisum larvae when applied in concentrations of over 10 µg/ml. We assessed the ability of LMA10233 to enhance the toxicity of different insecticides. When a sublethal concentration of LMA10233 was combined with the LC10 of each compound, we found a strong increase in toxicity at 24 h and 48 h of exposure for clothianidin, fipronil and chlorpyrifos, and only at 24 h for imidacloprid, acetamiprid and deltamethrin. However, when the pesticide was used at the LC50, only acetamiprid showed a synergistic effect with LMA10233. When the concentration of LMA10233 was decreased, we found that up to 80-90% of mortality was obtained due to the synergism between acetamiprid and LMA10233. No similar effect was observed with other insecticides. We conclude that such quinuclidine-borane complex compounds could increase the toxic effect of insecticides at low concentrations.


Asunto(s)
Boranos , Insecticidas , Plaguicidas , Animales , Benzamidas , Neonicotinoides , Nitrocompuestos , Quinuclidinas
9.
Front Physiol ; 11: 418, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457646

RESUMEN

Understanding insect nicotinic acetylcholine receptor (nAChR) subtypes is of major interest because they are the main target of several insecticides. In this study, we have cloned a cockroach Pameα7 subunit that encodes a 518 amino acid protein with futures typical of nAChR subunit, and sequence homology to α7 subunit. Pameα7 is differently expressed in the cockroach nervous system, in particular in the antennal lobes, optical lobes and the mushroom bodies where specific expression was found in the non-compact Kenyon cells. In addition, we found that cockroach Pameα7 subunits expressed in Xenopus laevis oocytes can assemble to form homomeric receptors. Electrophysiological recordings using the two-electrode voltage clamp method demonstrated that nicotine induced an I max current of -92 ± 27 nA at 1 mM. Despite that currents are low with the endogenous ligand, ACh, this study provides information on the first expression of cockroach α7 homomeric receptor.

10.
Anal Chem ; 92(8): 6034-6042, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32212634

RESUMEN

A wide range of collision cross section (CCS) databases for different families of compounds have recently been established from ion mobility mass spectrometry (IM-MS) measurements. Nevertheless, the need to validate these new data sets to provide the necessary confidence about the use of this parameter is increasingly expressed by the scientific community. If such a validation requires that complementary mass spectrometry experiments are conducted, it also appears that alternative strategies can contribute to the validation of such empirical data. In particular, in silico approaches are relevant to compute theoretical CCS values, to be compared to experimental ones. A recently published CCS database for 300 steroids allowed one to observe experimentally significant deviations of the expected CCS versus m/z correlations for some compounds. The present work attempts to rationalize such deviations with Density Functional Theory (DFT) calculations. MN15/6-311++G(d,p) investigations have been carried out, starting with a conformational analysis of a sample of 20 selected steroids and the determination of their preferred gas-phase ionization site. CCS values were then computed and compared to the experimental data. This approach allowed one to rationalize the experimental trends, providing an accurate description of the key properties of the various steroids considered.

11.
J Med Chem ; 63(3): 1002-1031, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-31894985

RESUMEN

Optimization of compound lipophilicity is a key aspect of drug discovery. The aim of this work was to compare the lipophilicity modulations induced by 16 distinct known and novel fluoroalkyl motifs on three parent models. Fifty fluorinated compounds, with 28 novel experimental aliphatic log P values, are involved in discussing various lipophilicity trends. As well as confirming known trends, a number of novel lipophilicity-reducing motifs are introduced. Tactics to reduce lipophilicity are discussed, such as "motif extensions" and "motif rearrangements", including with concomitant extension of the carbon chain, as well as one- and two-fluorine 'deletions' within perfluoroalkyl groups. Quantum chemical log P calculations (SMD-MN15) based on solvent-dependent three-dimensional (3D) conformational analysis gave excellent correlations with experimental values, superior to Clog P predictions based on 2D structural motifs. The availability of a systematic collection of data based on a small number of parent molecules illustrates the relative lipophilicity modulations of aliphatic fluorination motifs.


Asunto(s)
Hidrocarburos Fluorados/química , Interacciones Hidrofóbicas e Hidrofílicas , 1-Butanol/química , Halogenación , Conformación Molecular , Pentanoles/química
12.
Chemphyschem ; 21(3): 240-250, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31793159

RESUMEN

The nature of halogen-bond interactions has been analysed from the perspective of the astatine element, which is potentially the strongest halogen-bond donor. Relativistic quantum calculations on complexes formed between halide anions and a series of Y3 C-X (Y=F to X, X=I, At) halogen-bond donors disclosed unexpected trends, e. g., At3 C-At revealing a weaker donating ability than I3 C-I despite a stronger polarizability. All the observed peculiarities have their origin in a specific component of C-Y bonds: the charge-shift bonding. Descriptors of the Quantum Chemical Topology show that the halogen-bond strength can be quantitatively anticipated from the magnitude of charge-shift bonding operating in Y3 C-X. The charge-shift mechanism weakens the ability of the halogen atom X to engage in halogen bonds. This outcome provides rationales for outlier halogen-bond complexes, which are at variance with the consensus that the halogen-bond strength scales with the polarizability of the halogen atom.

13.
Chemistry ; 26(17): 3713-3717, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-31881101

RESUMEN

The halogen bond is a powerful tool for the molecular design and pushing the limits of its strength is of major interest. Bearing the most potent halogen-bond donor atom, astatine monoiodide (AtI) was recently successfully probed [Nat. Chem. 2018, 10, 428-434]. In this work, we continue the exploration of adducts between AtI and Lewis bases with the tributylphosphine oxide (Bu3 PO) ligand, revealing the unexpected experimental occurrence of two distinct chemical species with 1:1 and 2:1 stoichiometries. The 1:1 Bu3 PO⋅⋅⋅AtI complex is found to exhibit the strongest astatine-mediated halogen bond so far (with a formation constant of 10(4.24±0.35) ). Quantum chemical calculations unveil the intriguing nature of the 2:1 2Bu3 PO⋅⋅⋅AtI adduct, involving a halogen bond between AtI and one Bu3 PO molecular unit plus CH⋅⋅⋅O hydrogen bonds chelating the second Bu3 PO unit.

14.
J Chem Inf Model ; 59(9): 3755-3769, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31361951

RESUMEN

Structural features and binding properties of sulfoxaflor (SFX) with Ac-AChBP, the surrogate of the insect nAChR ligand binding domain (LBD), are reported herein using various complementary molecular modeling approaches (QM, molecular docking, molecular dynamics, and QM/QM'). The different SFX stereoisomers show distinct behaviors in terms of binding and interactions with Ac-AChBP. Molecular docking and Molecular Dynamics (MD) simulations highlight the specific intermolecular contacts involved in the binding of the different SFX isomers and the relative contribution of the SFX functional groups. QM/QM' calculations provide further insights and a significant refinement of the geometric and energetic contributions of the various residues leading to a preference for the SS and RR stereoisomers. Notable differences in terms of binding interactions are pointed out for the four stereoisomers. The results point out the induced fit of the Ac-AChBP binding site according to the SFX stereoisomer. In this process, the water molecules-mediated contacts play a key role, their energetic contribution being among the most important for the various stereoisomers. In all cases, the interaction with Trp147 is the major binding component, through CH···π and π···π interactions. This study provides a rationale for the binding of SFX to insect nAChR, in particular with respect to the new class of sulfoximine-based insect nAChR competitive modulators, and points out the requirements of various levels of theory for an accurate description of ligand-receptor interactions.


Asunto(s)
Aplysia/metabolismo , Insecticidas/metabolismo , Piridinas/metabolismo , Receptores Colinérgicos/metabolismo , Compuestos de Azufre/metabolismo , Animales , Aplysia/química , Aplysia/efectos de los fármacos , Sitios de Unión , Insecticidas/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Piridinas/química , Receptores Colinérgicos/química , Compuestos de Azufre/química , Termodinámica
15.
Neurotoxicology ; 74: 132-138, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31212017

RESUMEN

Cockroach neurosecretory cells, dorsal unpaired median (DUM) neurons, express two distinct α-bungarotoxin-insensitive nicotinic acetylcholine receptor subtypes, nAChR1 and nAChR2 which are differently sensitive to the neonicotinoid insecticides and intracellular calcium pathways. The aim of this study is to determine whether sulfoxaflor acts as an agonist of nAChR1 and nAChR2 subtypes. We demonstrated that 1 mM sulfoxaflor induced high current amplitudes, compared to acetylcholine, suggesting that it was a full agonist of DUM neuron nAChR subtypes. Sulfoxaflor evoked currents were not inhibited by the nicotinic acetylcholine receptor antagonist d-tubocurarine (dTC) which reduced nAChR1. But, sulfoxaflor evoked currents were reduced in the presence of 5 µM mecamylamine which is known to reduce nAChR2 subtype. Interestingly, when 1 µM imidacloprid was added in the extracellular solution, sulfoxaflor-induced currents were significantly suppressed. Moreover, when extracellular calcium concentration was increased, bath application of 1 µM imidacloprid partially reduced sulfoxaflor activated currents when nAChR1 was inhibited with 20 µM dTC and completely suppressed sulfoxaflor currents when nAChR2 was inhibited with 5 µM mecamylamine. Our data demonstrated therefore that sulfoxaflor activates both nAChR1 and nAChR2 subtypes.


Asunto(s)
Bungarotoxinas/farmacología , Colinérgicos/farmacología , Cucarachas , Neonicotinoides/farmacología , Agonistas Nicotínicos/farmacología , Nitrocompuestos/farmacología , Piridinas/farmacología , Receptores Nicotínicos/efectos de los fármacos , Compuestos de Azufre/farmacología , Acetilcolina/farmacología , Animales , Calcio/farmacología , Mecamilamina/farmacología , Antagonistas Nicotínicos/farmacología , Técnicas de Placa-Clamp , Piridinas/antagonistas & inhibidores , Compuestos de Azufre/antagonistas & inhibidores , Tubocurarina/toxicidad
16.
Eur J Med Chem ; 178: 195-213, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31185411

RESUMEN

iNKT cells recognize CD1d/α-galactosylceramide (α-GalCer) complexes via their invariant TCR receptor and stimulate the immune response. Many α-GalCer analogues have been investigated to interrogate this interaction. Following our previous work related to the modification of the hydrogen bond network between α-GalCer and CD1d, we have now focused our attention on the synthesis of 3-deoxy-3,3-difluoro- and 3,4-dideoxy-3,3,4,4-tetrafluoro-α-GalCer analogues, and studied their ability to stimulate human iNKT cells. In each case, deoxygenation at the indicated positions was accompanied by difluoro introduction in order to evaluate the resulting electronic effect on the stability of the ternary CD1d/Galcer/TCR complex which has been rationalized by modeling study. With deoxy-difluorination at the 3-position, the two epimeric 4-OH analogues were investigated to establish their capacity to compensate for the lack of the hydrogen bond donating group at the 3-position. The 3,4-dideoxytetrafluoro analogue was of interest to highlight the amide NH-bond hydrogen bond properties.


Asunto(s)
Antígenos CD1d/metabolismo , Galactosilceramidas/farmacología , Células T Asesinas Naturales/efectos de los fármacos , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos CD1d/química , Galactosilceramidas/síntesis química , Galactosilceramidas/química , Galactosilceramidas/metabolismo , Células HeLa , Humanos , Enlace de Hidrógeno , Interferón gamma/metabolismo , Interleucina-13/metabolismo , Modelos Moleculares , Conformación Molecular , Unión Proteica , Receptores de Antígenos de Linfocitos T/química , Estereoisomerismo
17.
J Org Chem ; 84(9): 5899-5906, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30869517

RESUMEN

There is an increasing interest in investigating how polyfluorination of carbohydrates modifies their physical and biological properties. An example that has caught much attention is 2,3,4-trideoxy-2,3,4-trifluoroglucose. Four syntheses of this compound have been reported, which are either low yielding or long (13 or more steps). We report a 6-step synthesis of 2,3,4-trideoxy-2,3,4-trifluoroglucose starting from levoglucosan. The solution-phase structure of an intermediate, 1,6-anhydro-2,4-dideoxy-2,4-difluoroallose, features a rare example of a bifurcated F···H(O)···F hydrogen bond and is compared to its crystal structure.

18.
Phytochemistry ; 158: 142-148, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30576967

RESUMEN

Three thiodiketopiperazines, botryosulfuranols A-C (1-3) were isolated from the endophytic fungus Botryosphaeria mamane. The three compounds present sulfur atoms on α- and ß-positions of phenylalanine derived residues and unprecedented two spirocyclic centers at C-4 and C-2'. Their planar structures were determined by spectroscopic analysis and absolute configurations were achieved by X-ray diffraction analysis and ECD and NMR chemical shifts calculations. Botryosulfuranol A (1) was the most cytotoxic compound against four cancer cell lines (HT-29, HepG2, Caco-2, HeLa) and two healthy cell lines (IEC6, Vero) highlighting the importance of an electrophilic center for cell growth inhibition.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Ascomicetos/química , Dicetopiperazinas/química , Dicetopiperazinas/farmacología , Antineoplásicos/aislamiento & purificación , Ascomicetos/fisiología , Bixaceae/microbiología , Células CACO-2 , Línea Celular , Dicroismo Circular , Cristalografía por Rayos X , Dicetopiperazinas/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales , Endófitos/química , Células HT29 , Células HeLa , Células Hep G2 , Humanos , Espectroscopía de Resonancia Magnética , Estructura Molecular
19.
J Med Chem ; 61(23): 10602-10618, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30411895

RESUMEN

Fluorination is commonly employed to optimize bioactivity and pharmaco-kinetic properties of drug candidates. Aliphatic fluorination often reduces the lipophilicity (log P), but polyfluoroalkylation typically increases lipophilicity. Hence, identification of polyfluorinated motifs that nonetheless lead to similar or even reduced lipophilicities is of interest to expand the arsenal of medicinal chemistry tools in tackling properties such as compound metabolic stability or off-target selectivity. We show that changing a CF3-group of a perfluoroalkyl chain to a methyl group leads to a drastic reduction in lipophilicity. We also show that changing a C-F bond of a trifluoromethyl group, including when incorporated as part of a perfluoroalkyl group, to a C-Me group, leads to a reduction in log P, despite the resulting chain elongation. The observed lipophilicity trends were identified in fluorinated alkanol models and reproduced when incorporated in analogues of a drug candidate, and the metabolic stability of these motifs was demonstrated.


Asunto(s)
Carbono/química , Hidrocarburos Fluorados/química , Interacciones Hidrofóbicas e Hidrofílicas , Animales , Antineoplásicos/química , Ensayos Clínicos como Asunto , Estabilidad de Medicamentos , Humanos , Modelos Moleculares , Conformación Molecular , Ratas
20.
Phys Chem Chem Phys ; 20(47): 29616-29624, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30318527

RESUMEN

The nature of halogen-bond interactions is scrutinized from the perspective of astatine, the heaviest halogen element. Potentially the strongest halogen-bond donor, its ability is shown to be deeply affected by relativistic effects and especially by the spin-orbit coupling. Complexes between a series of XY dihalogens (X, Y = At, I, Br, Cl and F) and ammonia are studied with two-component relativistic quantum calculations, revealing that the spin-orbit interaction leads to a weaker halogen-bond donating ability of the diastatine species with respect to diiodine. In addition, the donating ability of the lighter halogen elements, iodine and bromine, in the AtI and AtBr species is more decreased by the spin-orbit coupling than that of astatine. This can only be rationalized from the evolution of a charge-transfer descriptor, the local electrophilicity ω+S,max, determined for the pre-reactive XY species. Finally, the investigation of the spin-orbit coupling effects by means of quantum chemical topology methods allows us to unveil the connection between the astatine propensity to form charge-shift bonds and the astatine ability to engage in halogen bonds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...