Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Fungal Genet Biol ; 170: 103858, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101696

RESUMEN

The chytrid fungus Batrachochytrium dendrobatidis (Bd) was discovered in 1998 as the cause of chytridiomycosis, an emerging infectious disease causing mass declines in amphibian populations worldwide. The rapid population declines of the 1970s-1990s were likely caused by the spread of a highly virulent lineage belonging to the Bd-GPL clade that was introduced to naïve susceptible populations. Multiple genetically distinct and regional lineages of Bd have since been isolated and sequenced, greatly expanding the known biological diversity within this fungal pathogen. To date, most Bd research has been restricted to the limited number of samples that could be isolated using culturing techniques, potentially causing a selection bias for strains that can grow on media and missing other unculturable or fastidious strains that are also present on amphibians. We thus attempted to characterize potentially non-culturable genetic lineages of Bd from distinct amphibian taxa using sequence capture technology on DNA extracted from host tissue and swabs. We focused our efforts on host taxa from two different regions that likely harbored distinct Bd clades: (1) wild-caught leopard frogs (Rana) from North America, and (2) a Japanese Giant Salamander (Andrias japonicus) at the Smithsonian Institution's National Zoological Park that exhibited signs of disease and tested positive for Bd using qPCR, but multiple attempts failed to isolate and culture the strain for physiological and genetic characterization. We successfully enriched for and sequenced thousands of fungal genes from both host clades, and Bd load was positively associated with number of recovered Bd sequences. Phylogenetic reconstruction placed all the Rana-derived strains in the Bd-GPL clade. In contrast, the A. japonicus strain fell within the Bd-Asia3 clade, expanding the range of this clade and generating additional genomic data to confirm its placement. The retrieved ITS locus matched public barcoding data from wild A. japonicus and Bd infections found on other amphibians in India and China, suggesting that this uncultured clade is widespread across Asia. Our study underscores the importance of recognizing and characterizing the hidden diversity of fastidious strains in order to reconstruct the spatiotemporal and evolutionary history of Bd. The success of the sequence capture approach highlights the utility of directly sequencing pathogen DNA from host tissue to characterize cryptic diversity that is missed by culture-reliant approaches.


Asunto(s)
Quitridiomicetos , Animales , Filogenia , Quitridiomicetos/genética , Anfibios/genética , Anfibios/microbiología , Evolución Biológica , ADN
3.
Nature ; 622(7982): 308-314, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37794184

RESUMEN

Systematic assessments of species extinction risk at regular intervals are necessary for informing conservation action1,2. Ongoing developments in taxonomy, threatening processes and research further underscore the need for reassessment3,4. Here we report the findings of the second Global Amphibian Assessment, evaluating 8,011 species for the International Union for Conservation of Nature Red List of Threatened Species. We find that amphibians are the most threatened vertebrate class (40.7% of species are globally threatened). The updated Red List Index shows that the status of amphibians is deteriorating globally, particularly for salamanders and in the Neotropics. Disease and habitat loss drove 91% of status deteriorations between 1980 and 2004. Ongoing and projected climate change effects are now of increasing concern, driving 39% of status deteriorations since 2004, followed by habitat loss (37%). Although signs of species recoveries incentivize immediate conservation action, scaled-up investment is urgently needed to reverse the current trends.


Asunto(s)
Anfibios , Cambio Climático , Ecosistema , Especies en Peligro de Extinción , Animales , Anfibios/clasificación , Biodiversidad , Cambio Climático/estadística & datos numéricos , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/tendencias , Especies en Peligro de Extinción/estadística & datos numéricos , Especies en Peligro de Extinción/tendencias , Extinción Biológica , Riesgo , Urodelos/clasificación
4.
R Soc Open Sci ; 10(2): 220810, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36756057

RESUMEN

Dynamic interactions between host, pathogen and host-associated microbiome dictate infection outcomes. Pathogens including Batrachochytrium dendrobatidis (Bd) threaten global biodiversity, but conservation efforts are hindered by limited understanding of amphibian host, Bd and microbiome interactions. We conducted a vaccination and infection experiment using Eastern hellbender salamanders (Cryptobranchus alleganiensis alleganiensis) challenged with Bd to observe infection, skin microbial communities and gene expression of host skin, pathogen and microbiome throughout the experiment. Most animals survived high Bd loads regardless of their vaccination status and vaccination did not affect pathogen load, but host gene expression differed based on vaccination. Oral vaccination (exposure to killed Bd) stimulated immune gene upregulation while topically and sham-vaccinated animals did not significantly upregulate immune genes. In early infection, topically vaccinated animals upregulated immune genes but orally and sham-vaccinated animals downregulated immune genes. Bd increased pathogenicity-associated gene expression in late infection when Bd loads were highest. The microbiome was altered by Bd, but there was no correlation between anti-Bd microbe abundance or richness and pathogen burden. Our observations suggest that hellbenders initially generate a vigorous immune response to Bd, which is ineffective at controlling disease and is subsequently modulated. Interactions with antifungal skin microbiota did not influence disease progression.

5.
Proc Biol Sci ; 289(1978): 20220586, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35858072

RESUMEN

Many endangered amphibian species survive in captive breeding facilities, but there have been few attempts to reintroduce captive-born individuals to rebuild wild populations. We conducted a soft-release trial of limosa harlequin frogs, Atelopus limosus, which are highly susceptible to the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), to understand changes associated with the transition from captivity to the wild. Specifically, we assessed changes in body condition, skin-associated bacterial communities and disease status after release. Frogs were housed individually in field mesocosms and monitored for 27 days. Body condition did not significantly change in the mesocosms, and was similar to, or higher than, that of wild conspecifics at day 27. The skin bacteria of captive-born frogs, based on 16S rRNA gene amplicons, became similar to that of wild conspecifics after 27 days in mesocosms. Prevalence of Bd in wild conspecifics was 13-27%, and 15% of the A. limosus in mesocosms became infected with Bd, but no mortality of infected frogs was observed. We conclude that mesocosms are suitable for systematically and repeatedly monitoring amphibians during release trials, and that body condition, the skin microbiome, and Bd status can all change within one month of placement of captive-born individuals back into the wild.


Asunto(s)
Quitridiomicetos , Micosis , Animales , Anuros/genética , Bacterias , Bufonidae/genética , Quitridiomicetos/genética , Micosis/microbiología , Micosis/veterinaria , Fitomejoramiento , ARN Ribosómico 16S/genética , Piel/microbiología
6.
Appl Environ Microbiol ; 88(8): e0181821, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35348389

RESUMEN

Mucosal defenses are crucial in animals for protection against pathogens and predators. Host defense peptides (antimicrobial peptides, AMPs) as well as skin-associated microbes are key components of mucosal immunity, particularly in amphibians. We integrate microbiology, molecular biology, network-thinking, and proteomics to understand how host and microbially derived products on amphibian skin (referred to as the mucosome) serve as pathogen defenses. We studied defense mechanisms against chytrid pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), in four salamander species with different Batrachochytrium susceptibilities. Bd infection was quantified using qPCR, mucosome function (i.e., ability to kill Bd or Bsal zoospores in vitro), skin bacterial communities using 16S rRNA gene amplicon sequencing, and the role of Bd-inhibitory bacteria in microbial networks across all species. We explored the presence of candidate-AMPs in eastern newts and red-backed salamanders. Eastern newts had the highest Bd prevalence and mucosome function, while red-back salamanders had the lowest Bd prevalence and mucosome function, and two-lined salamanders and seal salamanders were intermediates. Salamanders with highest Bd infection intensity showed greater mucosome function. Bd infection prevalence significantly decreased as putative Bd-inhibitory bacterial richness and relative abundance increased on hosts. In co-occurrence networks, some putative Bd-inhibitory bacteria were found as hub-taxa, with red-backs having the highest proportion of protective hubs and positive associations related to putative Bd-inhibitory hub bacteria. We found more AMP candidates on salamanders with lower Bd susceptibility. These findings suggest that salamanders possess distinct innate mechanisms that affect chytrid fungi. IMPORTANCE How host mucosal defenses interact, and influence disease outcome is critical in understanding host defenses against pathogens. A more detailed understanding is needed of the interactions between the host and the functioning of its mucosal defenses in pathogen defense. This study investigates the variability of chytrid susceptibility in salamanders and the innate defenses each species possesses to mediate pathogens, thus advancing the knowledge toward a deeper understanding of the microbial ecology of skin-associated bacteria and contributing to the development of bioaugmentation strategies to mediate pathogen infection and disease. This study improves the understanding of complex immune defense mechanisms in salamanders and highlights the potential role of the mucosome to reduce the probability of Bd disease development and that putative protective bacteria may reduce likelihood of Bd infecting skin.


Asunto(s)
Quitridiomicetos , Micosis , Animales , Bacterias/genética , Quitridiomicetos/genética , Micosis/microbiología , Micosis/veterinaria , ARN Ribosómico 16S/genética , Urodelos/microbiología
7.
Biol Lett ; 17(6): 20210166, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34129800

RESUMEN

Severe Perkinsea infection is an emerging disease of amphibians, specifically tadpoles. Disease presentation correlates with liver infections of a subclade of Perkinsea (Alveolata) protists, named Pathogenic Perkinsea Clade (PPC). Tadpole mortality events associated with PPC infections have been reported across North America, from Alaska to Florida. Here, we investigate the geographic and host range of PPC associations in seemingly healthy tadpoles sampled from Panama, a biogeographic provenance critically affected by amphibian decline. To complement this work, we also investigate a mortality event among Hyla arborea tadpoles in captive-bred UK specimens. PPC SSU rDNA was detected in 10 of 81 Panama tadpoles tested, and H. arborea tadpoles from the UK. Phylogenies of the Perkinsea SSU rDNA sequences demonstrate they are highly similar to PPC sequences sampled from mortality events in the USA, and phylogenetic analysis of tadpole mitochondrial SSU rDNA demonstrates, for the first time, PPC associations in diverse hylids. These data provide further understanding of the biogeography and host range of this putative pathogenic group, factors likely to be important for conservation planning.


Asunto(s)
Larva , Alaska , Animales , Florida , América del Norte , Filogenia
8.
Conserv Physiol ; 9(1): coab079, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36118128

RESUMEN

Cold-adapted hellbender salamanders that inhabit cool mountain streams are expected to fare poorly under warmer projected climate scenarios. This study investigated the physiological consequences of long-term, naturalistic temperature variation on juvenile hellbenders under simulated current and warmer (+1.6 C) climates vs. controlled steady temperatures. Mean temperature and temperature variability were both important predictors of growth as indicated by monthly body mass change (%), stress as indicated by neutrophil:lymphocyte (N:L) ratio and bacteria-killing ability of blood. Cold exposure in hellbenders was associated with weight loss, increased N:L ratios and reduced Escherichia coli killing ability of blood, and these effects were less pronounced under a warmer climate scenario. These observations suggest that cold periods may be more stressful for hellbenders than previously understood. Growth rates peaked in late spring and late fall around 14-17°C. Hellbenders experiencing warmer simulated climates retained body condition better in winter, but this was counter-balanced by a prolonged lack of growth in the 3-month summer period leading up to the fall breeding season where warmer simulated conditions resulted in an average loss of -0.6% body mass/month, compared to a gain +1.5% body mass/month under current climate scenario. Hellbenders can physiologically tolerate projected warmer temperatures and temperature fluctuations, but warmer summers may cause animals to enter the fall breeding season with a caloric deficit that may have population-level consequences.

9.
ISME Commun ; 1(1): 57, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37938636

RESUMEN

We designed two probiotic treatments to control chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) on infected Panamanian golden frogs (Atelopus zeteki), a species that is thought to be extinct in the wild due to Bd. The first approach disrupted the existing skin microbe community with antibiotics then exposed the frogs to a core golden frog skin microbe (Diaphorobacter sp.) that we genetically modified to produce high titers of violacein, a known antifungal compound. One day following probiotic treatment, the engineered Diaphorobacter and the violacein-producing pathway could be detected on the frogs but the treatment failed to improve frog survival when exposed to Bd. The second approach exposed frogs to the genetically modified bacterium mixed into a consortium with six other known anti-Bd bacteria isolated from captive A. zeteki, with no preliminary antibiotic treatment. The consortium treatment increased the frequency and abundance of three probiotic isolates (Janthinobacterium, Chryseobacterium, and Stenotrophomonas) and these persisted on the skin 4 weeks after probiotic treatment. There was a temporary increase in the frequency and abundance of three other probiotics isolates (Masillia, Serratia, and Pseudomonas) and the engineered Diaphorobacter isolate, but they subsequently disappeared from the skin. This treatment also failed to reduce frog mortality upon exposure.

10.
Mol Ecol ; 29(15): 2889-2903, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32700351

RESUMEN

The disease chytridiomycosis caused by the fungus Bd has devastated amphibian populations worldwide. Functional genomic contributions to host susceptibility remain enigmatic and vary between species and populations. We conducted experimental Bd infections in Rana yavapaiensis, a species with intraspecific variation in chytridiomycosis susceptibility, to assess the skin and spleen transcriptomic response to infection over time. We predicted that increased immune gene expression would be associated with a positive disease outcome, but we instead found that surviving frogs had significantly reduced immune gene expression compared to susceptible frogs and to uninfected controls. MHC class IIß gene expression was also significantly higher in susceptible frogs compared to surviving frogs. Furthermore, susceptible frogs expressed a significantly larger number of distinct class IIß alleles, demonstrating a negative correlation between class IIß expression, functional diversity, and survival. Expression of the MHC class IIß locus previously associated with Bd disease outcomes was a significant predictor of Bd infection intensity at early infection stages but not at late infection stages, suggesting initial MHC-linked immune processes are important for ultimate disease outcomes. We infer through disease association and phylogenetic analysis that certain MHC variants are linked to the immune expression that was negatively associated with survival, and we hypothesize that frogs that did not express these alleles could better survive infections. Our study finds that MHC expression at early and late infection stages predicts Bd infection intensity, and suggests that generating a sustained immune response against Bd may be counterproductive for surviving chytridiomycosis in this partially susceptible species.


Asunto(s)
Quitridiomicetos , Micosis , Animales , Anuros/genética , Quitridiomicetos/genética , Micosis/genética , Micosis/veterinaria , Filogenia , Ranidae
12.
PLoS One ; 15(6): e0235285, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32598402

RESUMEN

Spindly leg syndrome (SLS) is a relatively common musculoskeletal abnormality associated with captive-rearing of amphibians with aquatic larvae. We conducted an experiment to investigate the role of environmental calcium and phosphate in causing SLS in tadpoles. Our 600-tadpole experiment used a fully-factorial design, rearing Atelopus varius tadpoles in water with either high (80mg/l CaCO3), medium (50mg/l CaCO3), or low calcium hardness (20mg/l CaCO3), each was combined with high (1.74 mg/l PO4) or low (0.36 mg/l PO4) phosphate levels. We found that calcium supplementation significantly improved tadpole survival from 19% to 49% and that low calcium treatments had 60% SLS that was reduced to about 15% at the medium and high calcium treatments. Phosphate supplementation significantly reduced SLS prevalence in low calcium treatments. This experimental research clearly links SLS to the calcium: phosphate homeostatic system, but we were unable to completely eliminate the issue, suggesting an interactive role of other unidentified factors.


Asunto(s)
Bufonidae/anomalías , Calcio/efectos adversos , Anomalías Musculoesqueléticas/patología , Fosfatos/efectos adversos , Animales , Bufonidae/crecimiento & desarrollo , Calcio/administración & dosificación , Ambiente , Anomalías Musculoesqueléticas/etiología , Fosfatos/administración & dosificación , Síndrome
13.
Science ; 367(6484)2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32193294

RESUMEN

Lambert et al question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species.


Asunto(s)
Quitridiomicetos , Micosis , Anfibios , Animales , Biodiversidad , Estudios Retrospectivos
14.
Science ; 363(6434): 1459-1463, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30923224

RESUMEN

Anthropogenic trade and development have broken down dispersal barriers, facilitating the spread of diseases that threaten Earth's biodiversity. We present a global, quantitative assessment of the amphibian chytridiomycosis panzootic, one of the most impactful examples of disease spread, and demonstrate its role in the decline of at least 501 amphibian species over the past half-century, including 90 presumed extinctions. The effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans in wet climates in the Americas and Australia. Declines peaked in the 1980s, and only 12% of declined species show signs of recovery, whereas 39% are experiencing ongoing decline. There is risk of further chytridiomycosis outbreaks in new areas. The chytridiomycosis panzootic represents the greatest recorded loss of biodiversity attributable to a disease.


Asunto(s)
Anuros/microbiología , Anuros/fisiología , Biodiversidad , Quitridiomicetos , Extinción Biológica , Micosis/veterinaria , Américas/epidemiología , Animales , Anuros/clasificación , Australia/epidemiología , Micosis/epidemiología
15.
PLoS One ; 13(10): e0204314, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30325919

RESUMEN

Spindly Leg Syndrome (SLS) is a persistent animal welfare issue associated with the rearing of amphibians in captivity. We conducted two experiments to investigate the effects of diet, water composition and overfeeding on prevalence of SLS in newly metamorphosed harlequin frogs (Atelopus spp.). In our first experiment, we offered 400 full-sibling tadpoles of Atelopus certus isocaloric diets in treatments of 31%, 37%, 42% and 48% crude protein respectively. Tadpoles fed higher protein diets metamorphosed faster, but the incidence of SLS exceeded 80% in all treatments leading to the conclusion that variation in dietary protein was not responsible for causing SLS. We used 720 full-sibling Atelopus glyphus tadpoles in a second experiment to examine the effects of diet type, water composition and diet ration on SLS. We found that an overall incidence of 58% spindly leg in tadpoles reared in tap water, but reduced to about 10% in water treated by reverse osmosis and then reconstituted. It is possible that the reverse osmosis treatment removed some factor that caused the SLS, or that the reconstitution may have added a mineral lacking in the original tap water. Within tap water treatments, overfeeding tadpoles in tanks increased the incidence of SLS. We recommend further experimental research into this condition to identify the causative factors in the water. Additional research into the nutritional composition of food available to wild tadpoles would be useful in formulating captive diets, that have to date been solely based on surrogate species.


Asunto(s)
Alimentación Animal/análisis , Bienestar del Animal/estadística & datos numéricos , Bufonidae/crecimiento & desarrollo , Agua/análisis , Alimentación Animal/efectos adversos , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Proteínas en la Dieta/efectos adversos , Incidencia , Metamorfosis Biológica
16.
J Zoo Wildl Med ; 49(2): 454-459, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29900788

RESUMEN

A chytridiomycosis outbreak from Batrachochytrium dendrobatidis ( Bd) in a mixed-species plethodontid salamander exhibit resulted in four green salamander ( Aneides aeneus) deaths. One green salamander died before treatment, and three died during treatment with daily 0.005% itraconazole baths. All salamanders had evidence of severe Bd infections via cytology, histopathology, and/or polymerase chain reaction (PCR) at the time of death. Ten long-tailed salamanders ( Eurycea longicauda) and one two-lined salamander ( Eurycea bislineata) that shared the enclosure were initially negative for Bd on quantitative PCR but were prophylactically treated with daily 0.01% itraconazole baths for 11 days. Posttreatment testing yielded eight long-tailed salamanders and one two-lined salamander positive for Bd with low gene equivalents. All salamanders were negative after two to three treatment courses, and there were no additional mortalities. The difference in mortality and fungal load suggested that genus Aneides salamanders may be more susceptible to Bd than genus Eurycea salamanders.


Asunto(s)
Quitridiomicetos/aislamiento & purificación , Brotes de Enfermedades/veterinaria , Susceptibilidad a Enfermedades , Micosis/veterinaria , Urodelos , Animales , Animales de Zoológico , Antifúngicos/uso terapéutico , District of Columbia , Itraconazol/uso terapéutico , Micosis/tratamiento farmacológico , Micosis/microbiología
17.
Microb Ecol ; 75(4): 1049-1062, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29119317

RESUMEN

Symbiotic bacteria can produce secondary metabolites and volatile compounds that contribute to amphibian skin defense. Some of these symbionts have been used as probiotics to treat or prevent the emerging disease chytridiomycosis. We examined 20 amphibian cutaneous bacteria for the production of prodigiosin or violacein, brightly colored defense compounds that pigment the bacteria and have characteristic spectroscopic properties making them readily detectable, and evaluated the antifungal activity of these compounds. We detected violacein from all six isolates of Janthinobacterium lividum on frogs from the USA, Switzerland, and on captive frogs originally from Panama. We detected prodigiosin from five isolates of Serratia plymuthica or S. marcescens, but not from four isolates of S. fonticola or S. liquefaciens. All J. lividum isolates produced violacein when visibly purple, while prodigiosin was only detected on visibly red Serratia isolates. When applied to cultures of chytrid fungi Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), prodigiosin caused significant growth inhibition, with minimal inhibitory concentrations (MIC) of 10 and 50 µM, respectively. Violacein showed a MIC of 15 µM against both fungi and was slightly more active against Bsal than Bd at lower concentrations. Although neither violacein nor prodigiosin showed aerosol activity and is not considered a volatile organic compound (VOC), J. lividum and several Serratia isolates did produce antifungal VOCs. White Serratia isolates with undetectable prodigiosin levels could still inhibit Bd growth indicating additional antifungal compounds in their chemical arsenals. Similarly, J. lividum can produce antifungal compounds such as indole-3-carboxaldehyde in addition to violacein, and isolates are not always purple, or turn purple under certain growth conditions. When Serratia isolates were grown in the presence of cell-free supernatant (CFS) from the fungi, CFS from Bd inhibited growth of the prodigiosin-producing isolates, perhaps indicative of an evolutionary arms race; Bsal CFS did not inhibit bacterial growth. In contrast, growth of one J. lividum isolate was facilitated by CFS from both fungi. Isolates that grow and continue to produce antifungal compounds in the presence of pathogens may represent promising probiotics for amphibians infected or at risk of chytridiomycosis. In a global analysis, 89% of tested Serratia isolates and 82% of J. lividum isolates were capable of inhibiting Bd and these have been reported from anurans and caudates from five continents, indicating their widespread distribution and potential for host benefit.


Asunto(s)
Bacterias/metabolismo , Quitridiomicetos/efectos de los fármacos , Indoles/antagonistas & inhibidores , Indoles/metabolismo , Prodigiosina/antagonistas & inhibidores , Prodigiosina/metabolismo , Compuestos Orgánicos Volátiles/antagonistas & inhibidores , Compuestos Orgánicos Volátiles/metabolismo , Animales , Antifúngicos/farmacología , Anuros/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Agentes de Control Biológico/antagonistas & inhibidores , Quitridiomicetos/crecimiento & desarrollo , Quitridiomicetos/patogenicidad , Indoles/química , Pruebas de Sensibilidad Microbiana , Panamá , Filogenia , Prodigiosina/química , Serratia/clasificación , Serratia/aislamiento & purificación , Serratia/metabolismo , Piel/microbiología , Suiza , Simbiosis , Estados Unidos , Compuestos Orgánicos Volátiles/química
18.
Theriogenology ; 108: 153-160, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29216539

RESUMEN

A better understanding of the factors influencing the biology of amphibian spermatozoa after release from the testis is a prerequisite to the development of sperm preservation methods. The objective of the study was to determine the effect of extracellular conditions (exposure to water and different temperatures) over time on the sperm motility and structural properties (including morphology and DNA integrity) collected from hormonally stimulated Atelopus zeteki. Following intraperitoneal injection of gonadotropin-releasing hormone agonist (des-Gly10, D-Ala6, Pro-NHEt9 GnRH; 4 µg/g of body weight), human chorionic gonadotropin (hCG, 10 IU/gbw), or Amphiplex™ (0.4 µg/gbw GnRH-A + 10 µg/gbw metoclopramide hydrochloride), spermic urine samples from 27 males were collected and analyzed for sperm motility, morphology and DNA integrity while maintained at room temperature (23 °C), 4 °C, or diluted in water (hypo-osmotic environment) over a period of 46 min post-collection. Percentages of sperm motility and forward progressive motility remained high (>60%) when spermic urine was kept at room temperature or at 4 °C for 46 min regardless of the hormonal stimulation method. Dilution in water at room temperature greatly reduced the percentage of motile spermatozoa and forward progression (<50%) as well as DNA integrity (32.8% of intact cells) after 23 min while morphology did not differ (30.4% of normal cells), regardless of the hormone stimulation. This is the first systematic study on the effect of extracellular environment over time on A. zeteki sperm quality. This will contribute to the development of sperm handling protocols and reproductive technologies for this and other endangered Atelopus species.


Asunto(s)
Anuros/fisiología , Espermatozoides/fisiología , Animales , Gonadotropina Coriónica/farmacología , Daño del ADN , Especies en Peligro de Extinción , Hormona Liberadora de Gonadotropina/análogos & derivados , Hormona Liberadora de Gonadotropina/farmacología , Masculino , Metoclopramida/farmacología , Análisis de Semen/veterinaria , Motilidad Espermática/efectos de los fármacos
19.
Sci Rep ; 7(1): 13132, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29030586

RESUMEN

We engaged pet salamander owners in the United States to screen their animals for two amphibian chytrid fungal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). We provided pet owners with a sampling kit and instructional video to swab the skin of their animals. We received 639 salamander samples from 65 species by mail, and tested them for Bd and Bsal using qPCR. We detected Bd on 1.3% of salamanders (95% CI 0.0053-0.0267) and did not detect Bsal (95% CI 0.0000-0.0071). If Bsal is present in the U.S. population of pet salamanders, it occurs at a very low prevalence. The United States Fish and Wildlife Service listed 201 species of salamanders as "injurious wildlife" under the Lacey Act (18 U.S.C. § 42) on January 28, 2016, a precautionary action to prevent the introduction of Bsal to the U.S. through the importation of salamanders. This action reduced the number of salamanders imported to the U.S. from 2015 to 2016 by 98.4%. Our results indicate that continued precautions should be taken to prevent the introduction and establishment of Bsal in the U.S., which is a hotspot of salamander biodiversity.


Asunto(s)
Quitridiomicetos/patogenicidad , Urodelos/microbiología , Animales , Biodiversidad , Micosis/microbiología , Piel/microbiología , Urodelos/clasificación
20.
PLoS One ; 12(4): e0176439, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28441417

RESUMEN

Sodium hypochlorite (NaOCl) is the active ingredient in household bleach and is commonly used as a disinfectant to clean equipment contaminated by the amphibian pathogen Batrachochytrium dendrobatidis (Bd) in lab husbandry and field studies. We conducted a series of replicated exposure trials using a single Global Pandemic Lineage Bd isolate from Panama (JEL 310) and concentrations of NaOCl ranging from 0.006% to 0.6% for exposure times ranging from 30 seconds to 15 minutes to determine the minimum lethal concentration of NaOCl for this isolate of Bd. Sodium hypochlorite completely killed Bd at a concentration of 0.03% during a 15-minute exposure time, while 0.12% NaOCl was effective at all exposure times (30s-15min).


Asunto(s)
Quitridiomicetos/efectos de los fármacos , Desinfectantes/administración & dosificación , Hipoclorito de Sodio/administración & dosificación , Anfibios , Animales , Relación Dosis-Respuesta a Droga
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...