Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CNS Neurosci Ther ; 30(7): e14880, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39073001

RESUMEN

Adenylyl cyclases (Adcys) catalyze the formation of cAMP, a secondary messenger essential for cell survival and neurotransmission pathways in the CNS. Adcy2, one of ten Adcy isoforms, is highly expressed in the CNS. Abnormal Adcy2 expression and mutations have been reported in various neurological disorders in both rodents and humans. However, due to the lack of genetic tools, loss-of-function studies of Adcy2 are scarce. In this review, we summarize recent findings on Adcy2 expression and function in neurological diseases. Specifically, we first introduce the biochemistry, structure, and function of Adcy2 briefly. Next, the expression and association of Adcy2 in human patients and rodent models of neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), psychiatric disorders (Tourette syndrome, schizophrenia, and bipolar disorder), and other neurological conditions (stress-associated disorders, stroke, epilepsy, and Lesch-Nyhan Syndrome) are elaborated. Furthermore, we discuss the pros and cons of current studies as well as key questions that need to be answered in the future. We hope to provide a focused review on Adcy2 that promotes future research in the field.


Asunto(s)
Adenilil Ciclasas , Enfermedades del Sistema Nervioso , Humanos , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/genética , Animales , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/metabolismo
2.
J Cereb Blood Flow Metab ; 44(4): 611-623, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38241459

RESUMEN

Laminin, a major component of the basal lamina in the CNS, is also expressed in oligodendrocytes (OLs). However, the function of OL-derived laminin remains largely unknown. Here, we performed loss-of-function studies using two OL-specific laminin-α5 conditional knockout mouse lines. Both mutants were grossly normal and displayed intact blood-brain barrier (BBB) integrity. In a mouse model of intracerebral hemorrhage (ICH), control mice and both mutants exhibited comparable hematoma size and neurological dysfunction. In addition, similar levels of hemoglobin and IgG leakage were detected in the mutant brains compared to the controls, indicating comparable BBB damage. Consistent with this finding, subsequent studies revealed no differences in tight junction protein (TJP) and caveolin-1 expression among control and knockout mice, suggesting that neither paracellular nor transcellular mechanism was affected in the mutants. Furthermore, compared to the controls, both mutant lines showed comparable oligodendrocyte number, oligodendrocyte proliferation rate, MBP/MAG levels, and SMI-32 expression, highlighting a minimal role of OL-derived laminin-α5 in OL biology. Together, these findings highlight a dispensable role of OL-derived laminin-α5 in both brain homeostasis and ICH pathogenesis.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Hemorragia Cerebral/patología , Homeostasis , Laminina/metabolismo , Ratones Noqueados , Oligodendroglía/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA