Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Exp Med ; 221(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38630025

RESUMEN

OTU deubiquitinase with linear linkage specificity (OTULIN) regulates inflammation and cell death by deubiquitinating linear ubiquitin chains generated by the linear ubiquitin chain assembly complex (LUBAC). Biallelic loss-of-function mutations causes OTULIN-related autoinflammatory syndrome (ORAS), while OTULIN haploinsuffiency has not been associated with spontaneous inflammation. However, herein, we identify two patients with the heterozygous mutation p.Cys129Ser in OTULIN. Consistent with ORAS, we observed accumulation of linear ubiquitin chains, increased sensitivity to TNF-induced death, and dysregulation of inflammatory signaling in patient cells. While the C129S mutation did not affect OTULIN protein stability or binding capacity to LUBAC and linear ubiquitin chains, it did ablate OTULIN deubiquitinase activity. Loss of activity facilitated the accumulation of autoubiquitin chains on LUBAC. Altered ubiquitination of LUBAC inhibits its recruitment to the TNF receptor signaling complex, promoting TNF-induced cell death and disease pathology. By reporting the first dominant negative mutation driving ORAS, this study expands our clinical understanding of OTULIN-associated pathology.


Asunto(s)
Inflamación , Ubiquitina , Humanos , Muerte Celular , Membrana Celular , Enzimas Desubicuitinizantes , Inflamación/genética , Síndrome , Complejos de Ubiquitina-Proteína Ligasa
2.
J Clin Immunol ; 44(1): 38, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165470

RESUMEN

BACKGROUND: X-linked reticular pigmentary disorder (XLPDR) is a rare condition characterized by skin hyperpigmentation, ectodermal features, multiorgan inflammation, and recurrent infections. All probands identified to date share the same intronic hemizygous POLA1 hypomorphic variant (NM_001330360.2(POLA1):c.1393-354A > G) on the X chromosome. Previous studies have supported excessive type 1 interferon (IFN) inflammation and natural killer (NK) cell dysfunction in disease pathogenesis. Common null polymorphisms in filaggrin (FLG) gene underlie ichthyosis vulgaris and atopic predisposition. CASE: A 9-year-old boy born to non-consanguineous parents developed eczema with reticular skin hyperpigmentation in early infancy. He suffered recurrent chest infections with chronic cough, clubbing, and asthma, moderate allergic rhinoconjunctivitis with keratitis, multiple food allergies, and vomiting with growth failure. Imaging demonstrated bronchiectasis, while gastroscopy identified chronic eosinophilic gastroduodenitis. Interestingly, growth failure and bronchiectasis improved over time without specific treatment. METHODS: Whole-genome sequencing (WGS) using Illumina short-read sequencing was followed by both manual and orthogonal automated bioinformatic analyses for single-nucleotide variants, small insertions/deletions (indels), and larger copy number variations. NK cell cytotoxic function was assessed using 51Cr release and degranulation assays. The presence of an interferon signature was investigated using a panel of six interferon-stimulated genes (ISGs) by QPCR. RESULTS: WGS identified a de novo hemizygous intronic variant in POLA1 (NM_001330360.2(POLA1):c.1393-354A > G) giving a diagnosis of XLPDR, as well as a heterozygous nonsense FLG variant (NM_002016.2(FLG):c.441del, NP_0020.1:p.(Arg151Glyfs*43)). Compared to healthy controls, the IFN signature was elevated although the degree moderated over time with the improvement in his chest disease. NK cell functional studies showed normal cytotoxicity and degranulation. CONCLUSION: This patient had multiple atopic manifestations affecting eye, skin, chest, and gut, complicating the presentation of XLPDR. This highlights that common FLG polymorphisms should always be considered when assessing genotype-phenotype correlations of other genetic variation in patients with atopic symptoms. Additionally, while the patient exhibited an enhanced IFN signature, he does not have an NK cell defect, suggesting this may not be a constant feature of XLPDR.


Asunto(s)
Bronquiectasia , Dermatitis Atópica , Hiperpigmentación , Masculino , Humanos , Niño , Variaciones en el Número de Copia de ADN , Proteínas Filagrina , Inflamación , Interferones
3.
Rheumatology (Oxford) ; 63(3): 882-890, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481715

RESUMEN

OBJECTIVE: The p.E148Q variant in pyrin is present in different populations at a frequency of up to 29%, and has been associated with diseases, including vasculitis and FMF. The pathogenicity of p.E148Q in FMF is unclear, even when observed in cis or in trans to a single, typically recessive, pathogenic mutation. We performed functional validation to determine whether p.E148Q increases the ability of pyrin to form an active inflammasome complex in cell lines. METHODS: We interrogated the Australian Autoinflammatory Disease RegistrY (AADRY) to find candidate inheritance patterns for the p.E148Q variant in pyrin. Different pyrin variant combinations were tested in HEK293T cells stably expressing the adaptor protein apoptosis-associated speck-like (ASC), which were analysed by flow cytometry to visualize inflammasome formation, with and without stimulation by Clostridioides difficile toxin B (TcdB). Inflammasome-dependent cytokine secretion was also quantified by ELISA of supernatants from THP-1 cells transduced with lentiviral expression vectors. RESULTS: In AADRY, we observed the p.E148Q allele in individuals with autoinflammatory diseases alone or in conjunction with other pyrin variants. Two FMF families harboured the allele p.E148Q-M694I in cis with dominant heritability. In vitro, p.E148Q pyrin could spontaneously potentiate inflammasome formation, with increased IL-1ß and IL-18 secretion. p.E148Q in cis to classical FMF mutations provided significant potentiation of inflammasome formation. CONCLUSION: The p.E148Q variant in pyrin potentiates inflammasome activation in vitro. In cis, this effect is additive to known pathogenic FMF mutations. In some families, this increased effect could explain why FMF segregates as an apparently dominant disease.


Asunto(s)
Inflamasomas , Pirina , Humanos , Australia , Toxinas Bacterianas/farmacología , Células HEK293 , Inflamasomas/genética , Mutación , Pirina/genética
4.
Eye (Lond) ; 37(14): 2896-2904, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36747109

RESUMEN

BACKGROUND: Corneal and conjunctival epithelial dendritic cells (DC) have an established role in vernal keratoconjunctivitis, however, their role in more prevalent forms of allergic eye disease remains unclear. This study evaluated corneal and conjunctival epithelial DC density, morphology, and distribution observed using in vivo confocal microscopy (IVCM) in allergic conjunctivitis. METHODS: In this prospective, observational study, 66 participants (mean age 36.6 ± 12.0 years, 56% female): 33 with allergic conjunctivitis and 33 controls were recruited. IVCM was performed at the corneal centre, inferior whorl, corneal periphery, corneal limbus, and temporal bulbar conjunctiva. DC were counted and their morphology was assessed as follows: largest cell body size, presence of dendrites, and presence of long and thick dendrites. Mixed model analysis (DC density) and non-parametric tests (DC morphology) were used. RESULTS: DC density was higher in allergic participants at all locations (p ≤ 0.01), (corneal centre median (IQR) 21.9 (8.7-50.9) cells/mm2 vs 13.1 (2.8-22.8) cells/mm2; periphery 37.5 (15.6-67.2) cells/mm2 vs 20 (9.4-32.5) cells/mm2; limbus 75 (60-120) cells/mm2 vs 58.1 (44.4-66.2) cells/mm2; conjunctiva 10 (0-54.4) cells/mm2 vs 0.6 (0-5.6) cells/mm2, but not at the inferior whorl 21.9 (6.2-34.4) cells/mm2 vs 12.5 (1.9-37.5) cells/mm2, p = 0.20. At the corneal centre, allergic participants had larger DC bodies (p = 0.02), a higher proportion of DC with dendrites (p = 0.02) and long dendrites (p = 0.003) compared to controls. CONCLUSIONS: Corneal and conjunctival DC density was increased, and morphology altered in allergic conjunctivitis. These findings imply that the ocular surface immune response was upregulated and support an increased antigen-capture capacity of DC in allergic conjunctivitis.


Asunto(s)
Conjuntivitis Alérgica , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Masculino , Estudios Prospectivos , Córnea , Conjuntiva , Células Dendríticas , Recuento de Células
5.
Eye (Lond) ; 37(13): 2768-2775, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36747108

RESUMEN

BACKGROUND: Increased density and altered morphology of dendritic cells (DC) in the cornea and conjunctiva occur during active allergic conjunctivitis. This study investigated whether inflammation (characterised by altered DC density and morphology) persists during the symptom-free phase of allergic conjunctivitis. METHODS: Twenty participants (age 43.3 ± 14.3 years, 55% female) assessed during their active (symptomatic) phase of allergic conjunctivitis were re-examined during the asymptomatic phase. Ocular allergy symptoms and signs were evaluated during both phases, and five ocular surface locations (corneal centre, inferior whorl, corneal periphery, corneal limbus, and bulbar conjunctiva) were examined using in vivo confocal microscopy (HRT III). DC were counted manually, and their morphology was assessed for cell body size, presence of dendrites, presence of long dendrites and presence of thick dendrites using a grading system. Mixed model analysis (DC density) and non-parametric tests (DC morphology) were used to examine differences between phases. RESULTS: DC density at corneal locations did not change between the active and asymptomatic phases (p ≥ 0.22). However, corneal DC body size was smaller and fewer DC presented with long dendrites during the asymptomatic phase (p ≤ 0.02). In contrast, at the bulbar conjunctiva, DC density was reduced during the asymptomatic phase compared to the active phase (p = 0.01), but there were no changes in DC morphology. CONCLUSIONS: Dendritiform immune cell numbers persist in the cornea during the symptom-free phase of allergic conjunctivitis, whereas conjunctival DC appear to return to a baseline state. The morphology of these persisting corneal DC suggests their antigen-capture capacity is reduced during the asymptomatic phase.


Asunto(s)
Conjuntivitis Alérgica , Humanos , Femenino , Adulto , Persona de Mediana Edad , Masculino , Microscopía Confocal , Córnea , Conjuntiva , Recuento de Células
6.
Blood ; 141(19): 2330-2342, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-36706356

RESUMEN

Familial forms of the severe immunoregulatory disease hemophagocytic lymphohistiocytosis (HLH) arise from biallelic mutations in the PRF1, UNC13D, STXBP2, and STX11 genes. Early and accurate diagnosis of the disease is important to determine the most appropriate treatment option, including potentially curative stem cell transplantation. The diagnosis of familial HLH (FHL) is traditionally based on finding biallelic mutations in patients with HLH symptoms and reduced natural killer (NK)-cell cytotoxicity. However, patients often have a low NK-cell count or receive immunosuppressive therapies that may render the NK-cell cytotoxicity assay unreliable. Furthermore, to fully understand the nature of a disease it is critical to directly assess the effect of mutations on cellular function; this will help to avoid instances in which carriers of innocuous mutations may be recommended for invasive procedures including transplantation. To overcome this diagnostic problem, we have developed a rapid and robust method that takes advantage of the functional equivalence of the human and mouse orthologues of PRF1, UNC13D, STX11, and STXBP2 proteins. By knocking out endogenous mouse genes in CD8+ T cells and simultaneously replacing them with their mutated human orthologues, we can accurately assess the effect of mutations on cell function. The wide dynamic range of this novel system allowed us to understand the basis of, otherwise cryptic, cases of FHL or HLH and, in some instances, to demonstrate that previously reported mutations are unlikely to cause FHL. This novel approach provides valuable new information to enable more accurate diagnosis and treatment of patients with HLH or FHL who inherit mutations of undetermined pathogenicity.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Humanos , Animales , Ratones , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/genética , Proteínas Citotóxicas Formadoras de Poros , Perforina/genética , Genotipo , Mutación , Fenotipo , Proteínas de la Membrana/genética , Proteínas Munc18/genética
7.
J Exp Med ; 220(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36342455

RESUMEN

Inborn and acquired deficits of type I interferon (IFN) immunity predispose to life-threatening COVID-19 pneumonia. We longitudinally profiled the B cell response to mRNA vaccination in SARS-CoV-2 naive patients with inherited TLR7, IRF7, or IFNAR1 deficiency, as well as young patients with autoantibodies neutralizing type I IFNs due to autoimmune polyendocrine syndrome type-1 (APS-1) and older individuals with age-associated autoantibodies to type I IFNs. The receptor-binding domain spike protein (RBD)-specific memory B cell response in all patients was quantitatively and qualitatively similar to healthy donors. Sustained germinal center responses led to accumulation of somatic hypermutations in immunoglobulin heavy chain genes. The amplitude and duration of, and viral neutralization by, RBD-specific IgG serological response were also largely unaffected by TLR7, IRF7, or IFNAR1 deficiencies up to 7 mo after vaccination in all patients. These results suggest that induction of type I IFN is not required for efficient generation of a humoral response against SARS-CoV-2 by mRNA vaccines.


Asunto(s)
Linfocitos B , Vacunas contra la COVID-19 , COVID-19 , Interferón Tipo I , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Autoanticuerpos , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Receptor Toll-Like 7/genética , Vacunación , Vacunas de ARNm , Vacunas contra la COVID-19/inmunología , Linfocitos B/inmunología , Interferón Tipo I/deficiencia
8.
Ocul Immunol Inflamm ; 31(5): 1097-1100, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35622932

RESUMEN

BACKGROUND: Orbital myositis is a rare sporadic eye disease associated with extraocular eye muscle inflammation. To date, there have been two reports of familial orbital myositis (FOM), which demonstrate partially penetrant autosomal dominant inheritance. CASES: We report six new Australian cases of FOM, four of whom extend one of the reported pedigrees, as well as a separate mother and daughter manifesting orbital myositis, which constitutes a third report of familial occurrence. We can confirm that the disease has onset in childhood, appearing to go into remission in adult life, and that the inflammation is corticosteroid-responsive. However, one patient went on to develop permanent diplopia in upgaze. We also report two children suffering chronic pain and diplopia who demonstrated complete resolution of symptoms with the anti-TNF-α monoclonal infliximab. CONCLUSION: Uncontrolled FOM in childhood may result in permanent extraocular eye muscle damage, while TNF-α blockade provides an excellent steroid-sparing effect.


Asunto(s)
Enfermedades Orbitales , Miositis Orbitaria , Adulto , Humanos , Niño , Miositis Orbitaria/diagnóstico , Miositis Orbitaria/tratamiento farmacológico , Miositis Orbitaria/etiología , Infliximab/uso terapéutico , Diplopía/complicaciones , Inhibidores del Factor de Necrosis Tumoral , Australia , Enfermedades Orbitales/diagnóstico , Inflamación/complicaciones
9.
Sci Immunol ; 7(73): eabq3277, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35867801

RESUMEN

High-level expression of the transcription factor T-bet characterizes a phenotypically distinct murine B cell population known as "age-associated B cells" (ABCs). T-bet-deficient mice have reduced ABCs and impaired humoral immunity. We describe a patient with inherited T-bet deficiency and largely normal humoral immunity including intact somatic hypermutation, affinity maturation and memory B cell formation in vivo, and B cell differentiation into Ig-producing plasmablasts in vitro. Nevertheless, the patient exhibited skewed class switching to IgG1, IgG4, and IgE, along with reduced IgG2, both in vivo and in vitro. Moreover, T-bet was required for the in vivo and in vitro development of a distinct subset of human B cells characterized by reduced expression of CD21 and the concomitantly high expression of CD19, CD20, CD11c, FCRL5, and T-bet, a phenotype that shares many features with murine ABCs. Mechanistically, human T-bet governed CD21loCD11chi B cell differentiation by controlling the chromatin accessibility of lineage-defining genes in these cells: FAS, IL21R, SEC61B, DUSP4, DAPP1, SOX5, CD79B, and CXCR4. Thus, human T-bet is largely redundant for long-lived protective humoral immunity but is essential for the development of a distinct subset of human CD11chiCD21lo B cells.


Asunto(s)
Linfocitos B , Células Plasmáticas , Proteínas Adaptadoras Transductoras de Señales , Animales , Antígeno CD11c/metabolismo , Regulación de la Expresión Génica , Humanos , Inmunoglobulina G , Lipoproteínas/metabolismo , Activación de Linfocitos , Ratones
10.
Clin Transl Immunology ; 11(4): e1365, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444807

RESUMEN

Since the emergence of the COVID-19 pandemic in early 2020, a key challenge has been to define risk factors, other than age and pre-existing comorbidities, that predispose some people to severe disease, while many other SARS-CoV-2-infected individuals experience mild, if any, consequences. One explanation for intra-individual differences in susceptibility to severe COVID-19 may be that a growing percentage of otherwise healthy people have a pre-existing asymptomatic primary immunodeficiency (PID) that is unmasked by SARS-CoV-2 infection. Germline genetic defects have been identified in individuals with life-threatening COVID-19 that compromise local type I interferon (IFN)-mediated innate immune responses to SARS-CoV-2. Remarkably, these variants - which impact responses initiated through TLR3 and TLR7, as well as the response to type I IFN cytokines - may account for between 3% and 5% of severe COVID-19 in people under 70 years of age. Similarly, autoantibodies against type I IFN cytokines (IFN-α, IFN-ω) have been detected in patients' serum prior to infection with SARS-CoV-2 and were found to cause c. 20% of severe COVID-19 in the above 70s and 20% of total COVID-19 deaths. These autoantibodies, which are more common in the elderly, neutralise type I IFNs, thereby impeding innate antiviral immunity and phenocopying an inborn error of immunity. The discovery of PIDs underlying a significant percentage of severe COVID-19 may go some way to explain disease susceptibility, may allow for the application of targeted therapies such as plasma exchange, IFN-α or IFN-ß, and may facilitate better management of social distancing, vaccination and early post-exposure prophylaxis.

11.
J Clin Immunol ; 42(1): 119-129, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34657245

RESUMEN

Rare, biallelic loss-of-function mutations in DOCK8 result in a combined immune deficiency characterized by severe and recurrent cutaneous infections, eczema, allergies, and susceptibility to malignancy, as well as impaired humoral and cellular immunity and hyper-IgE. The advent of next-generation sequencing technologies has enabled the rapid molecular diagnosis of rare monogenic diseases, including inborn errors of immunity. These advances have resulted in the implementation of gene-guided treatments, such as hematopoietic stem cell transplant for DOCK8 deficiency. However, putative disease-causing variants revealed by next-generation sequencing need rigorous validation to demonstrate pathogenicity. Here, we report the eventual diagnosis of DOCK8 deficiency in a consanguineous family due to a novel homozygous intronic deletion variant that caused aberrant exon splicing and subsequent loss of expression of DOCK8 protein. Remarkably, the causative variant was not initially detected by clinical whole-genome sequencing but was subsequently identified and validated by combining advanced genomic analysis, RNA-seq, and flow cytometry. This case highlights the need to adopt multipronged confirmatory approaches to definitively solve complex genetic cases that result from variants outside protein-coding exons and conventional splice sites.


Asunto(s)
Síndrome de Job , Consanguinidad , Factores de Intercambio de Guanina Nucleótido/genética , Homocigoto , Humanos , Síndrome de Job/diagnóstico , Síndrome de Job/genética , Mutación/genética , Secuenciación del Exoma
12.
J Paediatr Child Health ; 58(1): 46-53, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34694037

RESUMEN

The global disruption of the COVID-19 pandemic has impacted the life of every child either directly or indirectly. This review explores the pathophysiology, immune response, clinical presentation and treatment of COVID-19 in children, summarising the most up-to-date data including recent developments regarding variants of concern. The acute infection with SARS-CoV-2 is generally mild in children, whilst the post-infectious manifestations, including paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) and 'long COVID' in children, are more complex. Given that most research on COVID-19 has focused on adult cohorts and that clinical manifestations, treatment availability and impacts differ markedly in children, research that specifically examines COVID-19 in children needs to be prioritised.


Asunto(s)
COVID-19 , COVID-19/complicaciones , Niño , Humanos , Pandemias , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica , Síndrome Post Agudo de COVID-19
13.
J Paediatr Child Health ; 58(1): 39-45, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34643307

RESUMEN

Children globally have been profoundly impacted by the coronavirus disease 2019 (COVID-19) pandemic. This review explores the direct and indirect public health impacts of COVID-19 on children. We discuss in detail the transmission dynamics, vaccination strategies and, importantly, the 'shadow pandemic', encompassing underappreciated indirect impacts of the pandemic on children. The indirect effects of COVID-19 will have a long-term impact beyond the immediate pandemic period. These include the mental health and wellbeing risks, disruption to family income and attendant stressors including increased family violence, delayed medical attention and the critical issue of prolonged loss of face-to-face learning in a normal school environment. Amplification of existing inequities and creation of new disadvantage are likely additional sequelae, with children from vulnerable families disproportionately affected. We emphasise the responsibility of paediatricians to advocate on behalf of this vulnerable group to ensure the longer-term effects of COVID-19 public health responses on the health and wellbeing of children are fully considered.


Asunto(s)
COVID-19 , Violencia Doméstica , Niño , Humanos , Salud Mental , Pandemias , SARS-CoV-2
14.
J Clin Immunol ; 41(8): 1915-1935, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34657246

RESUMEN

PURPOSE: Deficiency of adenosine deaminase type 2 (ADA2) (DADA2) is a rare inborn error of immunity caused by deleterious biallelic mutations in ADA2. Clinical manifestations are diverse, ranging from severe vasculopathy with lacunar strokes to immunodeficiency with viral infections, hypogammaglobulinemia and bone marrow failure. Limited data are available on the phenotype and function of leukocytes from DADA2 patients. The aim of this study was to perform in-depth immunophenotyping and functional analysis of the impact of DADA2 on human lymphocytes. METHODS: In-depth immunophenotyping and functional analyses were performed on ten patients with confirmed DADA2 and compared to heterozygous carriers of pathogenic ADA2 mutations and normal healthy controls. RESULTS: The median age of the patients was 10 years (mean 20.7 years, range 1-44 years). Four out of ten patients were on treatment with steroids and/or etanercept or other immunosuppressives. We confirmed a defect in terminal B cell differentiation in DADA2 and reveal a block in B cell development in the bone marrow at the pro-B to pre-B cell stage. We also show impaired differentiation of CD4+ and CD8+ memory T cells, accelerated exhaustion/senescence, and impaired survival and granzyme production by ADA2 deficient CD8+ T cells. Unconventional T cells (i.e. iNKT, MAIT, Vδ2+ γδT) were diminished whereas pro-inflammatory monocytes and CD56bright immature NK cells were increased. Expression of the IFN-induced lectin SIGLEC1 was increased on all monocyte subsets in DADA2 patients compared to healthy donors. Interestingly, the phenotype and function of lymphocytes from healthy heterozygous carriers were often intermediate to that of healthy donors and ADA2-deficient patients. CONCLUSION: Extended immunophenotyping in DADA2 patients shows a complex immunophenotype. Our findings provide insight into the cellular mechanisms underlying some of the complex and heterogenous clinical features of DADA2. More research is needed to design targeted therapy to prevent viral infections in these patients with excessive inflammation as the overarching phenotype.


Asunto(s)
Agammaglobulinemia/inmunología , Linfocitos B/inmunología , Inmunodeficiencia Combinada Grave/inmunología , Linfocitos T/inmunología , Adenosina Desaminasa/sangre , Adenosina Desaminasa/deficiencia , Adenosina Desaminasa/genética , Adolescente , Adulto , Agammaglobulinemia/sangre , Agammaglobulinemia/genética , Anciano , Diferenciación Celular , Niño , Preescolar , Células Dendríticas/inmunología , Humanos , Lactante , Péptidos y Proteínas de Señalización Intercelular/sangre , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Células Asesinas Naturales/inmunología , Persona de Mediana Edad , Inmunodeficiencia Combinada Grave/sangre , Inmunodeficiencia Combinada Grave/genética , Adulto Joven
15.
Sci Immunol ; 6(64): eabh0891, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34623902

RESUMEN

Accumulation of human CD21low B cells in peripheral blood is a hallmark of chronic activation of the adaptive immune system in certain infections and autoimmune disorders. The molecular pathways underpinning the development, function, and fate of these CD21low B cells remain incompletely characterized. Here, combined transcriptomic and chromatin accessibility analyses supported a prominent role for the transcription factor T-bet in the transcriptional regulation of these T-bethighCD21low B cells. Investigating essential signals for generating these cells in vitro established that B cell receptor (BCR)/interferon-γ receptor (IFNγR) costimulation induced the highest levels of T-bet expression and enabled their differentiation during cell cultures with Toll-like receptor (TLR) ligand or CD40L/interleukin-21 (IL-21) stimulation. Low proportions of CD21low B cells in peripheral blood from patients with defined inborn errors of immunity (IEI), because of mutations affecting canonical NF-κB, CD40, and IL-21 receptor or IL-12/IFNγ/IFNγ receptor/signal transducer and activator of transcription 1 (STAT1) signaling, substantiated the essential roles of BCR- and certain T cell­derived signals in the in vivo expansion of T-bethighCD21low B cells. Disturbed TLR signaling due to MyD88 or IRAK4 deficiency was not associated with reduced CD21low B cell proportions. The expansion of human T-bethighCD21low B cells correlated with an expansion of circulating T follicular helper 1 (cTfh1) and T peripheral helper (Tph) cells, identifying potential sources of CD40L, IL-21, and IFNγ signals. Thus, we identified important pathways to target autoreactive T-bethighCD21low B cells in human autoimmune conditions, where these cells are linked to pathogenesis and disease progression.


Asunto(s)
Linfocitos B/inmunología , Receptores de Complemento 3d/inmunología , Proteínas de Dominio T Box/inmunología , Linfocitos T/inmunología , Adulto , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34417303

RESUMEN

Sterile α motif domain-containing protein 9-like (SAMD9L) is encoded by a hallmark interferon-induced gene with a role in controlling virus replication that is not well understood. Here, we analyze SAMD9L function from the perspective of human mutations causing neonatal-onset severe autoinflammatory disease. Whole-genome sequencing of two children with leukocytoclastic panniculitis, basal ganglia calcifications, raised blood inflammatory markers, neutrophilia, anemia, thrombocytopaenia, and almost no B cells revealed heterozygous de novo SAMD9L mutations, p.Asn885Thrfs*6 and p.Lys878Serfs*13. These frameshift mutations truncate the SAMD9L protein within a domain a region of homology to the nucleotide-binding and oligomerization domain (NOD) of APAF1, ∼80 amino acids C-terminal to the Walker B motif. Single-cell analysis of human cells expressing green fluorescent protein (GFP)-SAMD9L fusion proteins revealed that enforced expression of wild-type SAMD9L repressed translation of red fluorescent protein messenger RNA and globally repressed endogenous protein translation, cell autonomously and in proportion to the level of GFP-SAMD9L in each cell. The children's truncating mutations dramatically exaggerated translational repression even at low levels of GFP-SAMD9L per cell, as did a missense Arg986Cys mutation reported recurrently as causing ataxia pancytopenia syndrome. Autoinflammatory disease associated with SAMD9L truncating mutations appears to result from an interferon-induced translational repressor whose activity goes unchecked by the loss of C-terminal domains that may normally sense virus infection.


Asunto(s)
Ataxia/patología , Regulación de la Expresión Génica , Mutación Missense , Síndromes Mielodisplásicos/patología , Pancitopenia/patología , Biosíntesis de Proteínas , Proteínas Supresoras de Tumor/genética , Ataxia/genética , Niño , Femenino , Heterocigoto , Humanos , Recién Nacido , Masculino , Síndromes Mielodisplásicos/genética , Pancitopenia/genética
17.
J Clin Invest ; 131(3)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33290277

RESUMEN

Inborn errors of immunity cause monogenic immune dysregulatory conditions such as severe and recurrent pathogen infection, inflammation, allergy, and malignancy. Somatic reversion refers to the spontaneous repair of a pathogenic germline genetic variant and has been reported to occur in a number of inborn errors of immunity, with a range of impacts on clinical outcomes of these conditions. DOCK8 deficiency due to biallelic inactivating mutations in DOCK8 causes a combined immunodeficiency characterized by severe bacterial, viral, and fungal infections, as well as allergic disease and some cancers. Here, we describe the clinical, genetic, and cellular features of 3 patients with biallelic DOCK8 variants who, following somatic reversion in multiple lymphocyte subsets, exhibited improved clinical features, including complete resolution of infection and allergic disease, and cure over time. Acquisition of DOCK8 expression restored defective lymphocyte signalling, survival and proliferation, as well as CD8+ T cell cytotoxicity, CD4+ T cell cytokine production, and memory B cell generation compared with typical DOCK8-deficient patients. Our temporal analysis of DOCK8-revertant and DOCK8-deficient cells within the same individual established mechanisms of clinical improvement in these patients following somatic reversion and revealed further nonredundant functions of DOCK8 in human lymphocyte biology. Last, our findings have significant implications for future therapeutic options for the treatment of DOCK8 deficiency.


Asunto(s)
Diferenciación Celular , Factores de Intercambio de Guanina Nucleótido/deficiencia , Memoria Inmunológica/genética , Activación de Linfocitos/genética , Linfocitos/inmunología , Inmunodeficiencia Combinada Grave , Adulto , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Femenino , Humanos , Masculino , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/inmunología
18.
Pathology ; 52(7): 801-808, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32888706

RESUMEN

As the SARS-CoV-2 pandemic unfolds across the globe, consistent themes are emerging with regard to aspects of SARS-CoV-2 infection and its associated disease entities in children. Overall, children appear to be less frequently infected by, and affected by, SARS-CoV-2 virus and the clinical disease COVID-19. Large epidemiological studies have revealed children represent less than 2% of the total confirmed COVID-19 cases, of whom the majority experience minimal or mild disease that do not require hospitalisation. Children do not appear to be major drivers of SARS-CoV-2 transmission, with minimal secondary virus transmission demonstrated within families, schools and community settings. There are several postulated theories regarding the relatively low SARS-CoV-2 morbidity and mortality seen in children, which largely relate to differences in immune responses compared to adults, as well as differences in angiotensin converting enzyme 2 distribution that potentially limits viral entry and subsequent inflammation, hypoxia and tissue injury. The recent emergence of a multisystem inflammatory syndrome bearing temporal and serological plausibility for an immune-mediated SARS-CoV-2-related disease entity is currently under investigation. This article summarises the current available data regarding SARS-CoV-2 and the paediatric population, including the spectrum of disease in children, the role of children in virus transmission, and host-virus factors that underpin the unique aspects of SARS-CoV-2 pathogenicity in children.


Asunto(s)
COVID-19/transmisión , Interacciones Huésped-Patógeno/fisiología , SARS-CoV-2/patogenicidad , COVID-19/inmunología , COVID-19/virología , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , SARS-CoV-2/inmunología
19.
J Clin Immunol ; 40(5): 763-766, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32483663

RESUMEN

The Clinical Immunogenomics Research Consortium Australasia (CIRCA) crowdsources expertise in medicine, genomics, data science, and fundamental biology to diagnose and treat patients with rare inborn errors of immunity. This distributed network model operates free of geographic borders and allows rapid progression through the full research/translation/clinical management pipeline, from initial gene variant discovery, through functional validation, and on to precision mechanism-based treatment of patients throughout Australia and New Zealand. The model is scalable and applicable to other rare diseases where clinical experience and scientific know-how are limited, and enables efficient delivery of genomics for all.


Asunto(s)
Atención a la Salud/métodos , Modelos Económicos , Enfermedades de Inmunodeficiencia Primaria/genética , Australasia/epidemiología , Redes Comunitarias , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunogenética , Medicina de Precisión , Enfermedades de Inmunodeficiencia Primaria/epidemiología , Investigación Biomédica Traslacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...