Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Faraday Discuss ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847587

RESUMEN

Genetic code expansion has emerged as a powerful tool in enzyme design and engineering, providing new insights into sophisticated catalytic mechanisms and enabling the development of enzymes with new catalytic functions. In this regard, the non-canonical histidine analogue Nδ-methylhistidine (MeHis) has proven especially versatile due to its ability to serve as a metal coordinating ligand or a catalytic nucleophile with a similar mode of reactivity to small molecule catalysts such as 4-dimethylaminopyridine (DMAP). Here we report the development of a highly efficient aminoacyl tRNA synthetase (G1PylRSMIFAF) for encoding MeHis into proteins, by transplanting five known active site mutations from Methanomethylophilus alvus (MaPylRS) into the single domain PylRS from Methanogenic archaeon ISO4-G1. In contrast to the high concentrations of MeHis (5-10 mM) needed with the Ma system, G1PylRSMIFAF can operate efficiently using MeHis concentrations of ∼0.1 mM, allowing more economical production of a range of MeHis-containing enzymes in high titres. Interestingly G1PylRSMIFAF is also a 'polyspecific' aminoacyl tRNA synthetase (aaRS), enabling incorporation of five different non-canonical amino acids (ncAAs) including 3-pyridylalanine and 2-fluorophenylalanine. This study provides an important step towards scalable production of engineered enzymes that contain non-canonical amino acids such as MeHis as key catalytic elements.

2.
Nat Commun ; 15(1): 1956, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438341

RESUMEN

Directed evolution of computationally designed enzymes has provided new insights into the emergence of sophisticated catalytic sites in proteins. In this regard, we have recently shown that a histidine nucleophile and a flexible arginine can work in synergy to accelerate the Morita-Baylis-Hillman (MBH) reaction with unrivalled efficiency. Here, we show that replacing the catalytic histidine with a non-canonical Nδ-methylhistidine (MeHis23) nucleophile leads to a substantially altered evolutionary outcome in which the catalytic Arg124 has been abandoned. Instead, Glu26 has emerged, which mediates a rate-limiting proton transfer step to deliver an enzyme (BHMeHis1.8) that is more than an order of magnitude more active than our earlier MBHase. Interestingly, although MeHis23 to His substitution in BHMeHis1.8 reduces activity by 4-fold, the resulting His containing variant is still a potent MBH biocatalyst. However, analysis of the BHMeHis1.8 evolutionary trajectory reveals that the MeHis nucleophile was crucial in the early stages of engineering to unlock the new mechanistic pathway. This study demonstrates how even subtle perturbations to key catalytic elements of designed enzymes can lead to vastly different evolutionary outcomes, resulting in new mechanistic solutions to complex chemical transformations.


Asunto(s)
Arginina , Histidina , Histidina/genética , Evolución Biológica , Catálisis , Ingeniería , Metilhistidinas
3.
Chem Soc Rev ; 53(6): 2828-2850, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38407834

RESUMEN

Biocatalysis has become an important tool in chemical synthesis, allowing access to complex molecules with high levels of activity and selectivity and with low environmental impact. Key discoveries in protein engineering, bioinformatics, recombinant technology and DNA sequencing have contributed towards the rapid acceleration of the field. This tutorial review explores enzyme engineering strategies and high-throughput screening approaches that have been applied for the discovery and development of enzymes for synthetic application. Landmark developments in the field are discussed and have been carefully selected to highlight the diverse synthetic applications of enzymes within the pharmaceutical, agricultural, food and chemical industries. The design and development of artificial biocatalytic cascades is also examined. This tutorial review will give readers an insight into the landmark discoveries and milestones that have helped shape and grow this branch of catalysis since the discovery of the first enzyme.


Asunto(s)
Ingeniería de Proteínas , Biocatálisis , Catálisis
4.
Chem Soc Rev ; 53(6): 2851-2862, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38353665

RESUMEN

The engineering of natural enzymes has led to the availability of a broad range of biocatalysts that can be used for the sustainable manufacturing of a variety of chemicals and pharmaceuticals. However, for many important chemical transformations there are no known enzymes that can serve as starting templates for biocatalyst development. These limitations have fuelled efforts to build entirely new catalytic sites into proteins in order to generate enzymes with functions beyond those found in Nature. This bottom-up approach to enzyme development can also reveal new fundamental insights into the molecular origins of efficient protein catalysis. In this tutorial review, we will survey the different strategies that have been explored for designing new protein catalysts. These methods will be illustrated through key selected examples, which demonstrate how highly proficient and selective biocatalysts can be developed through experimental protein engineering and/or computational design. Given the rapid pace of development in the field, we are optimistic that designer enzymes will begin to play an increasingly prominent role as industrial biocatalysts in the coming years.


Asunto(s)
Ingeniería de Proteínas , Proteínas , Proteínas/metabolismo , Catálisis , Enzimas/metabolismo , Biocatálisis
5.
FEBS J ; 291(7): 1404-1421, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38060334

RESUMEN

The photoenzyme protochlorophyllide oxidoreductase (POR) is an important enzyme for understanding biological H-transfer mechanisms. It uses light to catalyse the reduction of protochlorophyllide to chlorophyllide, a key step in chlorophyll biosynthesis. Although a wealth of spectroscopic data have provided crucial mechanistic insight, a structural rationale for POR photocatalysis has proved challenging and remains hotly debated. Recent structural models of the ternary enzyme-substrate complex, derived from crystal and electron microscopy data, show differences in the orientation of the protochlorophyllide substrate and the architecture of the POR active site, with significant implications for the catalytic mechanism. Here, we use a combination of computational and experimental approaches to investigate the compatibility of each structural model with the hypothesised reaction mechanisms and propose an alternative structural model for the cyanobacterial POR ternary complex. We show that a strictly conserved tyrosine, previously proposed to act as the proton donor in POR photocatalysis, is unlikely to be involved in this step of the reaction but is crucial for Pchlide binding. Instead, an active site cysteine is important for both hydride and proton transfer reactions in POR and is proposed to act as the proton donor, either directly or through a water-mediated network. Moreover, a conserved glutamine is important for Pchlide binding and ensuring efficient photochemistry by tuning its electronic properties, likely by interacting with the central Mg atom of the substrate. This optimal 'binding pose' for the POR ternary enzyme-substrate complex illustrates how light energy can be harnessed to facilitate enzyme catalysis by this unique enzyme.


Asunto(s)
Cianobacterias , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Protoclorofilida/química , Luz , Protones , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Fotoquímica
6.
J Am Chem Soc ; 145(37): 20672-20682, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37688545

RESUMEN

Oxygenase and peroxygenase enzymes generate intermediates at their active sites which bring about the controlled functionalization of inert C-H bonds in substrates, such as in the enzymatic conversion of methane to methanol. To be viable catalysts, however, these enzymes must also prevent oxidative damage to essential active site residues, which can occur during both coupled and uncoupled turnover. Herein, we use a combination of stopped-flow spectroscopy, targeted mutagenesis, TD-DFT calculations, high-energy resolution fluorescence detection X-ray absorption spectroscopy, and electron paramagnetic resonance spectroscopy to study two transient intermediates that together form a protective pathway built into the active sites of copper-dependent lytic polysaccharide monooxygenases (LPMOs). First, a transient high-valent species is generated at the copper histidine brace active site following treatment of the LPMO with either hydrogen peroxide or peroxyacids in the absence of substrate. This intermediate, which we propose to be a CuII-(histidyl radical), then reacts with a nearby tyrosine residue in an intersystem-crossing reaction to give a ferromagnetically coupled (S = 1) CuII-tyrosyl radical pair, thereby restoring the histidine brace active site to its resting state and allowing it to re-enter the catalytic cycle through reduction. This process gives the enzyme the capacity to minimize damage to the active site histidine residues "on the fly" to increase the total turnover number prior to enzyme deactivation, highlighting how oxidative enzymes are evolved to protect themselves from deleterious side reactions during uncoupled turnover.


Asunto(s)
Cobre , Histidina , Oxigenasas de Función Mixta , Estrés Oxidativo , Catálisis
7.
Angew Chem Int Ed Engl ; 62(52): e202309305, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37651344

RESUMEN

The development and implementation of sustainable catalytic technologies is key to delivering our net-zero targets. Here we review how engineered enzymes, with a focus on those developed using directed evolution, can be deployed to improve the sustainability of numerous processes and help to conserve our environment. Efficient and robust biocatalysts have been engineered to capture carbon dioxide (CO2 ) and have been embedded into new efficient metabolic CO2 fixation pathways. Enzymes have been refined for bioremediation, enhancing their ability to degrade toxic and harmful pollutants. Biocatalytic recycling is gaining momentum, with engineered cutinases and PETases developed for the depolymerization of the abundant plastic, polyethylene terephthalate (PET). Finally, biocatalytic approaches for accessing petroleum-based feedstocks and chemicals are expanding, using optimized enzymes to convert plant biomass into biofuels or other high value products. Through these examples, we hope to illustrate how enzyme engineering and biocatalysis can contribute to the development of cleaner and more efficient chemical industry.


Asunto(s)
Dióxido de Carbono , Ingeniería , Biocatálisis , Catálisis , Biodegradación Ambiental , Enzimas/metabolismo
8.
J Org Chem ; 88(17): 12565-12571, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37607396

RESUMEN

In the wake of the Covid-19 pandemic, it has become clear that global access to efficacious antiviral drugs will be critical to combat future outbreaks of SARS-CoV-2 or related viruses. The orally available SARS-CoV-2 main protease inhibitor nirmatrelvir has proven an effective treatment option for Covid-19, especially in compromised patients. We report a new synthesis of nirmatrelvir featuring a highly enantioselective biocatalytic desymmetrization (>99% ee) and a highly diastereoselective multicomponent reaction (>25:1 dr) as the key steps. Our route avoids the use of transition metals and peptide coupling reagents, resulting in an overall highly efficient and atom-economic process.


Asunto(s)
COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Lactamas , Leucina , Nitrilos
9.
J Am Chem Soc ; 145(26): 14307-14315, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37341421

RESUMEN

The catalytic versatility of pentacoordinated iron is highlighted by the broad range of natural and engineered activities of heme enzymes such as cytochrome P450s, which position a porphyrin cofactor coordinating a central iron atom below an open substrate binding pocket. This catalytic prowess has inspired efforts to design de novo helical bundle scaffolds that bind porphyrin cofactors. However, such designs lack the large open substrate binding pocket of P450s, and hence, the range of chemical transformations accessible is limited. Here, with the goal of combining the advantages of the P450 catalytic site geometry with the almost unlimited customizability of de novo protein design, we design a high-affinity heme-binding protein, dnHEM1, with an axial histidine ligand, a vacant coordination site for generating reactive intermediates, and a tunable distal pocket for substrate binding. A 1.6 Å X-ray crystal structure of dnHEM1 reveals excellent agreement to the design model with key features programmed as intended. The incorporation of distal pocket substitutions converted dnHEM1 into a proficient peroxidase with a stable neutral ferryl intermediate. In parallel, dnHEM1 was redesigned to generate enantiocomplementary carbene transferases for styrene cyclopropanation (up to 93% isolated yield, 5000 turnovers, 97:3 e.r.) by reconfiguring the distal pocket to accommodate calculated transition state models. Our approach now enables the custom design of enzymes containing cofactors adjacent to binding pockets with an almost unlimited variety of shapes and functionalities.


Asunto(s)
Hemo , Porfirinas , Hemo/química , Metales , Sistema Enzimático del Citocromo P-450/metabolismo , Hierro/química , Porfirinas/química , Sitios de Unión
10.
Protein Sci ; 32(5): e4640, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37051694

RESUMEN

The availability of an expanded genetic code opens exciting new opportunities in enzyme design and engineering. In this regard histidine analogues have proven particularly versatile, serving as ligands to augment metalloenzyme function and as catalytic nucleophiles in designed enzymes. The ability to genetically encode multiple functional residues could greatly expand the range of chemistry accessible within enzyme active sites. Here, we develop mutually orthogonal translation components to selectively encode two structurally similar histidine analogues. Transplanting known mutations from a promiscuous Methanosarcina mazei pyrrolysyl-tRNA synthetase (MmPylRSIFGFF ) into a single domain PylRS from Methanomethylophilus alvus (MaPylRSIFGFF ) provided a variant with improved efficiency and specificity for 3-methyl-L-histidine (MeHis) incorporation. The MaPylRSIFGFF clone was further characterized using in vitro biochemical assays and x-ray crystallography. We subsequently engineered the orthogonal MmPylRS for activity and selectivity for 3-(3-pyridyl)-L-alanine (3-Pyr), which was used in combination with MaPylRSIFGFF to produce proteins containing both 3-Pyr and MeHis. Given the versatile roles played by histidine in enzyme mechanisms, we anticipate that the tools developed within this study will underpin the development of enzymes with new and enhanced functions.


Asunto(s)
Aminoacil-ARNt Sintetasas , Histidina , Histidina/genética , Lisina/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Aminoacil-ARNt Sintetasas/química , Methanosarcina/genética , Methanosarcina/metabolismo
11.
Protein Eng Des Sel ; 362023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36370045

RESUMEN

Enzyme design and engineering strategies are typically constrained by the limited size of nature's genetic alphabet, comprised of only 20 canonical amino acids. In recent years, site-selective incorporation of non-canonical amino acids (ncAAs) via an expanded genetic code has emerged as a powerful means of inserting new functional components into proteins, with hundreds of structurally diverse ncAAs now available. Here, we highlight how the emergence of an expanded repertoire of amino acids has opened new avenues in enzyme design and engineering. ncAAs have been used to probe complex biological mechanisms, augment enzyme function and, most ambitiously, embed new catalytic mechanisms into protein active sites that would be challenging to access within the constraints of nature's genetic code. We predict that the studies reviewed in this article, along with further advances in genetic code expansion technology, will establish ncAA incorporation as an increasingly important tool for biocatalysis in the coming years.


Asunto(s)
Aminoácidos , Proteínas , Aminoácidos/genética , Aminoácidos/química , Proteínas/química , Código Genético/genética , Clonación Molecular , Biocatálisis
12.
Angew Chem Weinheim Bergstr Ger ; 135(52): e202309305, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38516574

RESUMEN

The development and implementation of sustainable catalytic technologies is key to delivering our net-zero targets. Here we review how engineered enzymes, with a focus on those developed using directed evolution, can be deployed to improve the sustainability of numerous processes and help to conserve our environment. Efficient and robust biocatalysts have been engineered to capture carbon dioxide (CO2) and have been embedded into new efficient metabolic CO2 fixation pathways. Enzymes have been refined for bioremediation, enhancing their ability to degrade toxic and harmful pollutants. Biocatalytic recycling is gaining momentum, with engineered cutinases and PETases developed for the depolymerization of the abundant plastic, polyethylene terephthalate (PET). Finally, biocatalytic approaches for accessing petroleum-based feedstocks and chemicals are expanding, using optimized enzymes to convert plant biomass into biofuels or other high value products. Through these examples, we hope to illustrate how enzyme engineering and biocatalysis can contribute to the development of cleaner and more efficient chemical industry.

13.
Nature ; 611(7937): 709-714, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36130727

RESUMEN

The ability to program new modes of catalysis into proteins would allow the development of enzyme families with functions beyond those found in nature. To this end, genetic code expansion methodology holds particular promise, as it allows the site-selective introduction of new functional elements into proteins as noncanonical amino acid side chains1-4. Here we exploit an expanded genetic code to develop a photoenzyme that operates by means of triplet energy transfer (EnT) catalysis, a versatile mode of reactivity in organic synthesis that is not accessible to biocatalysis at present5-12. Installation of a genetically encoded photosensitizer into the beta-propeller scaffold of DA_20_00 (ref. 13) converts a de novo Diels-Alderase into a photoenzyme for [2+2] cycloadditions (EnT1.0). Subsequent development and implementation of a platform for photoenzyme evolution afforded an efficient and enantioselective enzyme (EnT1.3, up to 99% enantiomeric excess (e.e.)) that can promote intramolecular and bimolecular cycloadditions, including transformations that have proved challenging to achieve selectively with small-molecule catalysts. EnT1.3 performs >300 turnovers and, in contrast to small-molecule photocatalysts, can operate effectively under aerobic conditions and at ambient temperatures. An X-ray crystal structure of an EnT1.3-product complex shows how multiple functional components work in synergy to promote efficient and selective photocatalysis. This study opens up a wealth of new excited-state chemistry in protein active sites and establishes the framework for developing a new generation of enantioselective photocatalysts.


Asunto(s)
Biocatálisis , Reacción de Cicloadición , Enzimas , Procesos Fotoquímicos , Aminoácidos/química , Aminoácidos/metabolismo , Reacción de Cicloadición/métodos , Estereoisomerismo , Biocatálisis/efectos de la radiación , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , Enzimas/efectos de la radiación , Cristalografía por Rayos X , Dominio Catalítico , Código Genético , Diseño de Fármacos
14.
Nature ; 606(7912): 49-58, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650353

RESUMEN

The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs.


Asunto(s)
Biocatálisis , Biotecnología , Ingeniería de Proteínas , Proteínas , Biotecnología/métodos , Biotecnología/tendencias , Ingeniería de Proteínas/métodos , Ingeniería de Proteínas/tendencias , Proteínas/química , Proteínas/metabolismo
15.
J Am Chem Soc ; 144(9): 3761-3765, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35224970

RESUMEN

The Covid-19 pandemic highlights the urgent need for cost-effective processes to rapidly manufacture antiviral drugs at scale. Here we report a concise biocatalytic process for Molnupiravir, a nucleoside analogue recently approved as an orally available treatment for SARS-CoV-2. Key to the success of this process was the development of an efficient biocatalyst for the production of N-hydroxy-cytidine through evolutionary adaption of the hydrolytic enzyme cytidine deaminase. This engineered biocatalyst performs >85 000 turnovers in less than 3 h, operates at 180 g/L substrate loading, and benefits from in situ crystallization of the N-hydroxy-cytidine product (85% yield), which can be converted to Molnupiravir by a selective 5'-acylation using Novozym 435.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Citidina Desaminasa/metabolismo , Citidina/análogos & derivados , SARS-CoV-2 , Biocatálisis , Citidina/biosíntesis , Citidina/metabolismo , Citidina Desaminasa/genética , Escherichia coli/enzimología , Escherichia coli/genética , Hidroxilaminas , Ingeniería Metabólica , Ingeniería de Proteínas , Uridina/metabolismo
16.
Curr Opin Biotechnol ; 75: 102691, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35151980

RESUMEN

The synthetic yeast, Sc2.0, is nearing completion as consolidation of all 17 synthetic chromosomes into a single cell advances. This organism will be the first synthetic eukaryote and provides a highly plastic biological chassis built from the bottom-up using principles of biological design. This synthetic approach to genome construction has allowed the genetic code to be re-wired in this background to liberate the amber stop codon as a dedicated triplet for encoding non-canonical amino acids. The availability of an expanded set of amino acid building blocks allows precise control of protein structure and function, providing new opportunities to develop protein-based therapeutics, materials and catalysts. In this article, we review the challenges facing genetic code expansion research in yeast and highlight how the development of Sc2.0 provides new and exciting opportunities to address existing limitations.


Asunto(s)
Código Genético , Saccharomyces cerevisiae , Aminoácidos/metabolismo , Codón de Terminación/genética , Código Genético/genética , Proteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Nat Chem ; 14(3): 313-320, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34916595

RESUMEN

The combination of computational design and directed evolution could offer a general strategy to create enzymes with new functions. So far, this approach has delivered enzymes for a handful of model reactions. Here we show that new catalytic mechanisms can be engineered into proteins to accelerate more challenging chemical transformations. Evolutionary optimization of a primitive design afforded an efficient and enantioselective enzyme (BH32.14) for the Morita-Baylis-Hillman (MBH) reaction. BH32.14 is suitable for preparative-scale transformations, accepts a broad range of aldehyde and enone coupling partners and is able to promote selective monofunctionalizations of dialdehydes. Crystallographic, biochemical and computational studies reveal that BH32.14 operates via a sophisticated catalytic mechanism comprising a His23 nucleophile paired with a judiciously positioned Arg124. This catalytic arginine shuttles between conformational states to stabilize multiple oxyanion intermediates and serves as a genetically encoded surrogate of privileged bidentate hydrogen-bonding catalysts (for example, thioureas). This study demonstrates that elaborate catalytic devices can be built from scratch to promote demanding multi-step processes not observed in nature.


Asunto(s)
Proteínas , Catálisis , Enlace de Hidrógeno , Conformación Molecular , Estereoisomerismo
18.
JACS Au ; 1(7): 913-918, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34337604

RESUMEN

Nature employs high-energy metal-oxo intermediates embedded within enzyme active sites to perform challenging oxidative transformations with remarkable selectivity. Understanding how different local metal-oxo coordination environments control intermediate reactivity and catalytic function is a long-standing objective. However, conducting structure-activity relationships directly in active sites has proven challenging due to the limited range of amino acid substitutions achievable within the constraints of the genetic code. Here, we use an expanded genetic code to examine the impact of hydrogen bonding interactions on ferryl heme structure and reactivity, by replacing the N-H group of the active site Trp51 of cytochrome c peroxidase by an S atom. Removal of a single hydrogen bond stabilizes the porphyrin π-cation radical state of CcP W191F compound I. In contrast, this modification leads to more basic and reactive neutral ferryl heme states, as found in CcP W191F compound II and the wild-type ferryl heme-Trp191 radical pair of compound I. This increased reactivity manifests in a >60-fold activity increase toward phenolic substrates but remarkably has negligible effects on oxidation of the biological redox partner cytc. Our data highlight how Trp51 tunes the lifetimes of key ferryl intermediates and works in synergy with the redox active Trp191 and a well-defined substrate binding site to regulate catalytic function. More broadly, this work shows how noncanonical substitutions can advance our understanding of active site features governing metal-oxo structure and reactivity.

19.
Org Biomol Chem ; 19(25): 5529-5533, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34105582

RESUMEN

Promiscuous activity of a glycosyltransferase was exploited to polymerise glucose from UDP-glucose via the generation of ß-1,4-glycosidic linkages. The biocatalyst was incorporated into biocatalytic cascades and chemo-enzymatic strategies to synthesise cello-oligosaccharides with tailored functionalities on a scale suitable for employment in mass spectrometry-based assays. The resulting glycan structures enabled reporting of the activity and selectivity of celluloltic enzymes.


Asunto(s)
Glicosiltransferasas
20.
FEBS J ; 288(13): 4115-4128, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33411405

RESUMEN

Fungal lytic polysaccharide monooxygenases (LPMOs) depolymerise crystalline cellulose and hemicellulose, supporting the utilisation of lignocellulosic biomass as a feedstock for biorefinery and biomanufacturing processes. Recent investigations have shown that H2 O2 is the most efficient cosubstrate for LPMOs. Understanding the reaction mechanism of LPMOs with H2 O2 is therefore of importance for their use in biotechnological settings. Here, we have employed a variety of spectroscopic and biochemical approaches to probe the reaction of the fungal LPMO9C from N. crassa using H2 O2 as a cosubstrate and xyloglucan as a polysaccharide substrate. We show that a single 'priming' electron transfer reaction from the cellobiose dehydrogenase partner protein supports up to 20 H2 O2 -driven catalytic cycles of a fungal LPMO. Using rapid mixing stopped-flow spectroscopy, alongside electron paramagnetic resonance and UV-Vis spectroscopy, we reveal how H2 O2 and xyloglucan interact with the enzyme and investigate transient species that form uncoupled pathways of NcLPMO9C. Our study shows how the H2 O2 cosubstrate supports fungal LPMO catalysis and leaves the enzyme in the reduced Cu+ state following a single enzyme turnover, thus preventing the need for external protons and electrons from reducing agents or cellobiose dehydrogenase and supporting the binding of H2 O2 for further catalytic steps. We observe that the presence of the substrate xyloglucan stabilises the Cu+ state of LPMOs, which may prevent the formation of uncoupled side reactions.


Asunto(s)
Polisacáridos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxigenasas de Función Mixta/metabolismo , Neurospora crassa/enzimología , Biocatálisis , Celulosa/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Proteínas Fúngicas/genética , Glucanos/metabolismo , Oxigenasas de Función Mixta/genética , Neurospora crassa/genética , Oxidación-Reducción , Polisacáridos/metabolismo , Unión Proteica , Proteínas Recombinantes/metabolismo , Espectrofotometría/métodos , Especificidad por Sustrato , Xilanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...