Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 17809, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090263

RESUMEN

Skin microvasculature is vital for human cardiovascular health and thermoregulation, but its imaging and analysis presents significant challenges. Statistical methods such as speckle decorrelation in optical coherence tomography angiography (OCTA) often require multiple co-located B-scans, leading to lengthy acquisitions prone to motion artefacts. Deep learning has shown promise in enhancing accuracy and reducing measurement time by leveraging local information. However, both statistical and deep learning methods typically focus solely on processing individual 2D B-scans, neglecting contextual information from neighbouring B-scans. This limitation compromises spatial context and disregards the 3D features within tissue, potentially affecting OCTA image accuracy. In this study, we propose a novel approach utilising 3D convolutional neural networks (CNNs) to address this limitation. By considering the 3D spatial context, these 3D CNNs mitigate information loss, preserving fine details and boundaries in OCTA images. Our method reduces the required number of B-scans while enhancing accuracy, thereby increasing clinical applicability. This advancement holds promise for improving clinical practices and understanding skin microvascular dynamics crucial for cardiovascular health and thermoregulation.


Asunto(s)
Imagenología Tridimensional , Microvasos , Redes Neurales de la Computación , Piel , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Humanos , Microvasos/diagnóstico por imagen , Microvasos/fisiología , Piel/diagnóstico por imagen , Piel/irrigación sanguínea , Imagenología Tridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Profundo
2.
BMC Sports Sci Med Rehabil ; 16(1): 127, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849904

RESUMEN

BACKGROUND: Cardiac rehabilitation has been identified as having the most homogenous clinical exercise service structure in the United Kingdom (UK), but inconsistencies are evident in staff roles and qualifications within and across services. The recognition of Clinical Exercise Physiologists (CEPs) as a registered health professional in 2021 in the UK, provides a potential solution to standardise the cardiac rehabilitation workforce. This case study examined, in a purposefully selected cardiac exercise service that employed registered CEPs, (i) how staff knowledge, skills and competencies contribute to the provision of the service, (ii) how these components assist in creating effective service teams, and (iii) the existing challenges from staff and patient perspectives. METHODS: A multi-method qualitative approach (inc., semi-structured interviews, observations, field notes and researcher reflections) was employed with the researcher immersed for 12-weeks within the service. The Consolidated Framework for Implementation Research was used as an overarching guide for data collection. Data derived from registered CEPs (n = 5), clinical nurse specialists (n = 2), dietitians (n = 1), service managers/leads (n = 2) and patients (n = 7) were thematically analysed. RESULTS: Registered CEPs delivered innovative exercise prescription based on their training, continued professional development (CPD), academic qualifications and involvement in research studies as part of the service. Exposure to a wide multidisciplinary team (MDT) allowed skill and competency transfer in areas such as clinical assessments. Developing an effective behaviour change strategy was challenging with delivery of lifestyle information more effective during less formal conversations compared to timetabled education sessions. CONCLUSIONS: Registered CEPs have the specialist knowledge and skills to undertake and implement the latest evidence-based exercise prescription in a cardiac rehabilitation setting. An MDT service structure enables a more effective team upskilling through shared peer experiences, observations and collaborative working between healthcare professionals.

3.
BMJ Open Sport Exerc Med ; 10(2): e002033, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911478

RESUMEN

In 2021, a 'call to action' was published to highlight the need for professional regulation of clinical exercise physiologists to be established within UK healthcare systems to ensure patient safety and align training and regulation with other health professions. This manuscript provides a progress report on the actions that Clinical Exercise Physiology UK (CEP-UK) has undertaken over the past 4 years, during which time clinical exercise physiologists have implemented regulation and gained formal recognition as healthcare professionals in the UK. An overview of the consultation process involved in creating a regulated health profession, notably the development of policies and procedures for both individual registration and institutional master's degree (MSc) accreditation is outlined. Additionally, the process for developing an industry-recognised scope of practice, a university MSc-level curriculum framework, the Academy for Healthcare Science Practitioner standards of proficiency and Continuing Professional Development opportunities is included. We outline the significant activities and milestones undertaken by CEP-UK and provide insight and clarity for other health professionals to understand the training and registration process for a clinical exercise physiologist in the UK. Finally, we include short, medium and long-term objectives for the future advocacy development of this workforce in the UK.

4.
Eur J Appl Physiol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695912

RESUMEN

PURPOSE: We compared the effects of low-volume combined aerobic and resistance high-intensity interval training (C-HIIT), combined moderate-intensity continuous training (C-MICT) and waitlist control (CON) on vascular health after 8-weeks of supervised training, and an additional 10-months of self-directed training, in adults with type 2 diabetes (T2D). METHODS: Sixty-nine low active adults with T2D were randomised to 8-weeks of supervised C-HIIT (3 times/week, 78-min/week), C-MICT (current exercise guidelines, 4 times/week, 210-min/week) or CON. CON underwent usual care for 8-weeks before being re-randomised to C-HIIT or C-MICT. This was followed by 10-months of self-directed training for participants in C-HIIT and C-MICT. Vascular outcomes were evaluated at baseline, 8-weeks, and 12-months. RESULTS: After 8-weeks, supervised C-HIIT significantly improved relative flow-mediated dilation (FMD) compared with CON (mean difference [MD] 0.8% [0.1, 1.4], p = 0.025). Although not significantly different from CON, the magnitude of change in relative FMD following 8-weeks of supervised C-MICT was similar (MD 0.8% [-0.1, 1.7], p = 0.080). There were no differences in haemodynamic indices, carotid-femoral pulse wave velocity (cfPWV), or aortic reservoir pressure between groups at 8-weeks. After 12-months, there was a significant reduction in haemodynamic indices (time effect, p < 0.05) for both C-HIIT and C-MICT, with no between-group difference. The reduction in cfPWV over 12-months was significantly greater in C-MICT than C-HIIT (group × time effect, p = 0.018). There was no difference in FMD over time or between groups at 12-months. CONCLUSIONS: Short-term supervised C-HIIT and C-MICT both increased brachial artery FMD compared with CON. Long-term C-HIIT and C-MICT were beneficial for improving haemodynamic indices, but not brachial artery FMD. C-MICT was superior to C-HIIT for improving cfPWV at 12-months. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry Identifier ACTRN12615000475549.

5.
Sports Med Open ; 10(1): 30, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563849

RESUMEN

BACKGROUND: Based on the largely untested premise that it is a restorative hormone that may reverse the detrimental impacts of aging, prescription of testosterone (T) has increased in recent decades despite no new clinical indications. It is apparent that middle-aged and older men with low-normal serum T levels are considering T supplementation as an anti-aging strategy. At the same time, there is evidence that physical activity (PA) is at historical lows in the Western world. In this review, we compare the impacts of T treatment aimed at achieving physiological T concentrations in middle-aged and older men, alongside the impacts of ecologically relevant forms of exercise training. The independent, and possible combined, effects of T and exercise therapy on physiological outcomes such as aerobic fitness, body composition and muscular strength are addressed. MAIN BODY: Our findings suggest that both T treatment and exercise improve lean body mass in healthy older men. If improvement in lean body mass is the primary aim, then T treatment could be considered, and the combination of T and exercise may be more beneficial than either in isolation. In terms of muscle strength in older age, an exercise program is likely to be more beneficial than T treatment (where the dose is aimed at achieving physiological concentrations), and the addition of such T treatment does not provide further benefit beyond that of exercise alone. For aerobic fitness, T at doses aimed at achieving physiological concentrations has relatively modest impacts, particularly in comparison to exercise training, and there is limited evidence as to additive effects. Whilst higher doses of T, particularly by intramuscular injection, may have larger impacts on lean body mass and strength, this must be balanced against potential risks. CONCLUSION: Knowing the impacts of T treatment and exercise on variables such as body composition, strength and aerobic fitness extends our understanding of the relative benefits of physiological and pharmacological interventions in aging men. Our review suggests that T has impacts on strength, body composition and aerobic fitness outcomes that are dependent upon dose, route of administration, and formulation. T treatment aimed at achieving physiological T concentrations in middle-aged and older men can improve lean body mass, whilst exercise training enhances lean body mass, aerobic fitness and strength. Men who are physically able to exercise safely should be encouraged to do so, not only in terms of building lean body mass, strength and aerobic fitness, but for the myriad health benefits that exercise training confers.

6.
Diabetes Care ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687506

RESUMEN

This narrative review highlights the degree to which new antiobesity medications based on gut-derived nutrient-stimulated hormones (incretins) cause loss of lean mass, and the importance of resistance exercise to preserve muscle. Glucagon-like peptide 1 receptor agonists (GLP-1RA) induce substantial weight loss in randomized trials, effects that may be enhanced in combination with glucose-dependent insulinotropic polypeptide (GIP) receptor agonists. Liraglutide and semaglutide (GLP-1RA), tirzepatide (GLP-1 and GIP receptor dual agonist), and retatrutide (GLP-1, GIP, and glucagon receptor triple agonist) are peptides with incretin agonist activity that induce ∼15-24% weight loss in adults with overweight and obesity, alongside beneficial impacts on blood pressure, cholesterol, blood glucose, and insulin. However, these agents also cause rapid and significant loss of lean mass (∼10% or ∼6 kg), comparable to a decade or more of aging. Maintaining muscle mass and function as humans age is crucial to avoiding sarcopenia and frailty, which are strongly linked to morbidity and mortality. Studies indicate that supervised resistance exercise training interventions with a duration >10 weeks can elicit large increases in lean mass (∼3 kg) and strength (∼25%) in men and women. After a low-calorie diet, combining aerobic exercise with liraglutide improved weight loss maintenance compared with either alone. Retaining lean mass during incretin therapy could blunt body weight (and fat) regain on cessation of weight loss pharmacotherapy. We propose that tailored resistance exercise training be recommended as an adjunct to incretin therapy to optimize changes in body composition by preserving lean mass while achieving fat loss.

7.
Am J Physiol Heart Circ Physiol ; 326(4): H929-H937, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334974

RESUMEN

Few training studies have assessed the impact of different modes of exercise on changes in cardiac function. This study investigated changes in left ventricular (LV) systolic and diastolic function following endurance (END) and resistance (RES) training in healthy participants. Sixty-four individuals participated in a randomized crossover design trial, involving 12 wk of END and RES training, separated by a 12-wk washout. Echocardiograms assessed systolic function [ejection fraction (EF) and global longitudinal strain (GLS)], diastolic function [mitral valve early velocity (E), tissue Doppler velocity (e'), their ratio (E/e')], and left atrial volume indexed to body surface area (LA ESVi). LV mass (LVM) increased with both RES (Δ5.3 ± 11.9, P = 0.001) and END (Δ7.5 ± 13.9, P < 0.001). Once adjusted for lean body mass (LVMi), changes remained significant following END. E/e' improved following END (Δ-0.35 ± 0.98, P = 0.011) not RES (Δ0.35 ± 1.11, P =0.157; P = 0.001 between modes). LA ESVi increased with END (Δ2.0 ± 6.1, P = 0.019) but not RES (Δ1.7 ± 5.7, P = 0.113). EF and GLS were not impacted significantly by either mode of training. Adaptation in LVM and LA volumes, as well as diastolic function, was exercise mode specific. Twelve weeks of intensive END increased LVM, LA volumes, and increased diastolic function. Following RES, LVM increased, although this was attenuated after accounting for changes in lean body mass. There were no changes in systolic function following either mode of exercise training.NEW & NOTEWORTHY Different types of exercise training induce distinct physiological adaptations however few exercise training studies have assessed the impact of different modes of exercise on cardiac function. This study investigated changes in left ventricular systolic and diastolic function following exercise training. Participants completed both endurance and resistance training separated by a 12-wk washout period so each participant is their own control. We present adaptations in cardiac structure and diastolic function are exercise mode specific.


Asunto(s)
Ecocardiografía , Función Ventricular Izquierda , Humanos , Estudios Cruzados , Función Ventricular Izquierda/fisiología , Ejercicio Físico , Terapia por Ejercicio
8.
NPJ Microgravity ; 10(1): 7, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218868

RESUMEN

We investigated variations in haemodynamics in response to simulated microgravity across a semi-subject-specific three-dimensional (3D) continuous arterial network connecting the heart to the eye using computational fluid dynamics (CFD) simulations. Using this model we simulated pulsatile blood flow in an upright Earth gravity case and a simulated microgravity case. Under simulated microgravity, regional time-averaged wall shear stress (TAWSS) increased and oscillatory shear index (OSI) decreased in upper body arteries, whilst the opposite was observed in the lower body. Between cases, uniform changes in TAWSS and OSI were found in the retina across diameters. This work demonstrates that 3D CFD simulations can be performed across continuously connected networks of small and large arteries. Simulated results exhibited similarities to low dimensional spaceflight simulations and measured data-specifically that blood flow and shear stress decrease towards the lower limbs and increase towards the cerebrovasculature and eyes in response to simulated microgravity, relative to an upright position in Earth gravity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA