Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38768074

RESUMEN

BACKGROUND: Myocarditis is clinically characterized by chest pain, arrhythmias, and heart failure, and treatment for myocarditis is often supportive. Mutations in DSP, a gene encoding the desmosomal protein desmoplakin, have been increasingly implicated in myocarditis with biomarkers and pathological features indistinguishable from other forms of myocarditis. DSP-associated myocarditis can progress to dilated cardiomyopathy with heightened arrhythmia risk. METHODS: To model the cardiomyocyte aspects of DSP-associated myocarditis and assess the role of innate immunity, we generated engineered heart tissues (EHTs) from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients and gene-edited healthy control hiPSC lines. Homozygous and heterozygous DSP disrupted EHTs were generated to contain 90% hiPSC-CMs and 10% healthy control human cardiac fibroblasts. We measured innate immune activation and function at baseline and in response to Toll-like receptor (TLR) stimulation in EHTs. RESULTS: At baseline, DSP-/- EHTs displayed a transcriptomic signature of immune activation which was mirrored by EHT cytokine release. Importantly, DSP-/- EHTs were hypersensitive to TLR stimulation demonstrating greater contractile function impairment compared to isogenic controls. Compared to homozygous DSP-/- EHTs, heterozygous DSP patient-derived EHTs had less functionally impairment but also displayed heightened sensitivity to TLR stimulation. When subjected to strain, heterozygous DSP EHTs developed greater functional deficit indicating reduced contractile reserve compared to healthy control. Colchicine or NFΚB inhibitors improved baseline force production and strain-induced force deficits in DSP EHTs. Genomic correction of DSP p.R1951X using adenine base editing reduced inflammatory biomarker release from EHTs. CONCLUSIONS: Genetic reduction of DSP renders cardiomyocytes susceptible to innate immune activation and strain-dependent contractile deficits. EHTs replicate electrical and contractile phenotypes seen in human myocarditis implicating cytokine release as a key part of the myogenic susceptibility to inflammation. This heightened innate immune activation and sensitivity is a target for clinical intervention.

2.
J Cell Biol ; 222(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37733372

RESUMEN

Melanoma is an aggressive cancer typically arising from transformation of melanocytes residing in the basal layer of the epidermis, where they are in direct contact with surrounding keratinocytes. The role of keratinocytes in shaping the melanoma tumor microenvironment remains understudied. We previously showed that temporary loss of the keratinocyte-specific cadherin, Desmoglein 1 (Dsg1), controls paracrine signaling between normal melanocytes and keratinocytes to stimulate the protective tanning response. Here, we provide evidence that melanoma cells hijack this intercellular communication by secreting factors that keep Dsg1 expression low in the surrounding keratinocytes, which in turn generate their own paracrine signals that enhance melanoma spread through CXCL1/CXCR2 signaling. Evidence suggests a model whereby paracrine signaling from melanoma cells increases levels of the transcriptional repressor Slug, and consequently decreases expression of the Dsg1 transcriptional activator Grhl1. Together, these data support the idea that paracrine crosstalk between melanoma cells and keratinocytes resulting in chronic keratinocyte Dsg1 reduction contributes to melanoma cell movement associated with tumor progression.


Asunto(s)
Desmogleína 1 , Queratinocitos , Melanoma , Humanos , Movimiento Celular , Desmogleína 1/genética , Epidermis , Melanoma/genética , Melanoma/patología , Microambiente Tumoral/genética
3.
Sci Rep ; 13(1): 12720, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543698

RESUMEN

Critical for the maintenance of epidermal integrity and function are attachments between intermediate filaments (IF) and intercellular junctions called desmosomes. The desmosomal cytoplasmic plaque protein desmoplakin (DP) is essential for anchoring IF to the junction. DP-IF interactions are regulated by a phospho-regulatory motif within the DP C-terminus controlling keratinocyte intercellular adhesion. Here we identify the protein phosphatase 2A (PP2A)-B55α holoenzyme as the major serine/threonine phosphatase regulating DP's C-terminus and consequent intercellular adhesion. Using a combination of chemical and genetic approaches, we show that the PP2A-B55α holoenzyme interacts with DP at intercellular membranes in 2D- and 3D- epidermal models and human skin samples. Our experiments demonstrate that PP2A-B55α regulates the phosphorylation status of junctional DP and is required for maintaining strong desmosome-mediated intercellular adhesion. These data identify PP2A-B55α as part of a regulatory module capable of tuning intercellular adhesion strength and a candidate disease target in desmosome-related disorders of the skin and heart.


Asunto(s)
Queratinocitos , Proteína Fosfatasa 2 , Humanos , Desmoplaquinas , Holoenzimas/metabolismo , Uniones Intercelulares/metabolismo , Queratinocitos/metabolismo , Proteína Fosfatasa 2/metabolismo
4.
JCI Insight ; 8(16)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37471166

RESUMEN

Darier, Hailey-Hailey, and Grover diseases are rare acantholytic skin diseases. While these diseases have different underlying causes, they share defects in cell-cell adhesion in the epidermis and desmosome organization. To better understand the underlying mechanisms leading to disease in these conditions, we performed RNA-seq on lesional skin samples from patients. The transcriptomic profiles of Darier, Hailey-Hailey, and Grover diseases were found to share a remarkable overlap, which did not extend to other common inflammatory skin diseases. Analysis of enriched pathways showed a shared increase in keratinocyte differentiation, and a decrease in cell adhesion and actin organization pathways in Darier, Hailey-Hailey, and Grover diseases. Direct comparison to atopic dermatitis and psoriasis showed that the downregulation in actin organization pathways was a unique feature in the acantholytic skin diseases. Furthermore, upstream regulator analysis suggested that a decrease in SRF/MRTF activity was responsible for the downregulation of actin organization pathways. Staining for MRTFA in lesional skin samples showed a decrease in nuclear MRTFA in patient skin compared with normal skin. These findings highlight the significant level of similarity in the transcriptome of Darier, Hailey-Hailey, and Grover diseases, and identify decreases in actin organization pathways as a unique signature present in these conditions.


Asunto(s)
Actinas , Enfermedades de la Piel , Humanos , Piel/patología , Acantólisis/genética , Acantólisis/metabolismo , Enfermedades de la Piel/complicaciones , Enfermedades de la Piel/patología
6.
Sci Rep ; 13(1): 7743, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173371

RESUMEN

Epithelia maintain a functional barrier during tissue turnover while facing varying mechanical stress. This maintenance requires both dynamic cell rearrangements driven by actomyosin-linked intercellular adherens junctions and ability to adapt to and resist extrinsic mechanical forces enabled by keratin filament-linked desmosomes. How these two systems crosstalk to coordinate cellular movement and mechanical resilience is not known. Here we show that in stratifying epithelia the polarity protein aPKCλ controls the reorganization from stress fibers to cortical actomyosin during differentiation and upward movement of cells. Without aPKC, stress fibers are retained resulting in increased contractile prestress. This aberrant stress is counterbalanced by reorganization and bundling of keratins, thereby increasing mechanical resilience. Inhibiting contractility in aPKCλ-/- cells restores normal cortical keratin networks but also normalizes resilience. Consistently, increasing contractile stress is sufficient to induce keratin bundling and enhance resilience, mimicking aPKC loss. In conclusion, our data indicate that keratins sense the contractile stress state of stratified epithelia and balance increased contractility by mounting a protective response to maintain tissue integrity.


Asunto(s)
Actomiosina , Transducción de Señal , Actomiosina/metabolismo , Epitelio/metabolismo , Citoesqueleto/metabolismo , Queratinas/metabolismo , Células Epiteliales/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(22): e2220635120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216502

RESUMEN

Stiffness and actomyosin contractility are intrinsic mechanical properties of animal cells required for the shaping of tissues. However, whether tissue stem cells (SCs) and progenitors located within SC niche have different mechanical properties that modulate their size and function remains unclear. Here, we show that hair follicle SCs in the bulge are stiff with high actomyosin contractility and resistant to size change, whereas hair germ (HG) progenitors are soft and periodically enlarge and contract during quiescence. During activation of hair follicle growth, HGs reduce contraction and more frequently enlarge, a process that is associated with weakening of the actomyosin network, nuclear YAP accumulation, and cell cycle reentry. Induction of miR-205, a novel regulator of the actomyosin cytoskeleton, reduces actomyosin contractility and activates hair regeneration in young and old mice. This study reveals the control of tissue SC size and activities by spatiotemporally compartmentalized mechanical properties and demonstrates the possibility to stimulate tissue regeneration by fine-tuning cell mechanics.


Asunto(s)
Folículo Piloso , MicroARNs , Animales , Ratones , Actomiosina/metabolismo , Cabello , Folículo Piloso/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Madre/metabolismo
8.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865131

RESUMEN

Epithelia are subject to diverse forms of mechanical stress during development and post-embryonic life. They possess multiple mechanisms to preserve tissue integrity against tensile forces, which characteristically involve specialized cell-cell adhesion junctions coupled to the cytoskeleton. Desmosomes connect to intermediate filaments (IF) via desmoplakin (DP)1,2, while the E-cadherin complex links to the actomyosin cytoskeleton in adherens junctions (AJ)3. These distinct adhesion-cytoskeleton systems support different strategies to preserve epithelial integrity, especially against tensile stress. IFs coupled to desmosomes can passively respond to tension by strain-stiffening4-10, whereas for AJs a variety of mechanotransduction mechanisms associated with the E-cadherin apparatus itself11,12, or proximate to the junctions13, can modulate the activity of its associated actomyosin cytoskeleton by cell signaling. We now report a pathway where these systems collaborate for active tension-sensing and epithelial homeostasis. We found that DP was necessary for epithelia to activate RhoA at AJ on tensile stimulation, an effect that required its capacity to couple IF to desmosomes. DP exerted this effect by facilitating the association of Myosin VI with E-cadherin, the mechanosensor for the tension-sensitive RhoA pathway at AJ12. This connection between the DP-IF system and AJ-based tension-sensing promoted epithelial resilience when contractile tension was increased. It further facilitated epithelial homeostasis by allowing apoptotic cells to be eliminated by apical extrusion. Thus, active responses to tensile stress in epithelial monolayers reflect an integrated response of the IF- and actomyosin-based cell-cell adhesion systems.

9.
bioRxiv ; 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824910

RESUMEN

Melanoma arises from transformation of melanocytes in the basal layer of the epidermis where they are surrounded by keratinocytes, with which they interact through cell contact and paracrine communication. Considerable effort has been devoted to determining how the accumulation of oncogene and tumor suppressor gene mutations in melanocytes drive melanoma development. However, the extent to which alterations in keratinocytes that occur in the developing tumor niche serve as extrinsic drivers of melanoma initiation and progression is poorly understood. We recently identified the keratinocyte-specific cadherin, desmoglein 1 (Dsg1), as an important mediator of keratinocyte:melanoma cell crosstalk, demonstrating that its chronic loss, which can occur through melanoma cell-dependent paracrine signaling, promotes behaviors that mimic a malignant phenotype. Here we address the extent to which Dsg1 loss affects early steps in melanomagenesis. RNA-Seq analysis revealed that paracrine signals from Dsg1-deficient keratinocytes mediate a transcriptional switch from a differentiated to undifferentiated cell state in melanocytes expressing BRAFV600E, a driver mutation commonly present in both melanoma and benign nevi and reported to cause growth arrest and oncogene-induced senescence (OIS). Of ~220 differentially expressed genes in BRAFV600E cells treated with Dsg1-deficient conditioned media (CM), the laminin superfamily member NTN4/Netrin-4, which inhibits senescence in endothelial cells, stood out. Indeed, while BRAFV600E melanocytes treated with Dsg1-deficient CM showed signs of senescence bypass as assessed by increased senescence-associated ß-galactosidase activity and decreased p16, knockdown of NTN4 reversed these effects. These results suggest that Dsg1 loss in keratinocytes provides an extrinsic signal to push melanocytes towards oncogenic transformation once an initial mutation has been introduced.

10.
J Cell Sci ; 136(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36594662

RESUMEN

Desmosome diseases are caused by dysfunction of desmosomes, which anchor intermediate filaments (IFs) at sites of cell-cell adhesion. For many decades, the focus of attention has been on the role of actin filament-associated adherens junctions in development and disease, especially cancer. However, interference with the function of desmosomes, their molecular constituents or their attachments to IFs has now emerged as a major contributor to a variety of diseases affecting different tissues and organs including skin, heart and the digestive tract. The first Alpine desmosome disease meeting (ADDM) held in Grainau, Germany, in October 2022 brought together international researchers from the basic sciences with clinical experts from diverse fields to share and discuss their ideas and concepts on desmosome function and dysfunction in the different cell types involved in desmosome diseases. Besides the prototypic desmosomal diseases pemphigus and arrhythmogenic cardiomyopathy, the role of desmosome dysfunction in inflammatory bowel diseases and eosinophilic esophagitis was discussed.


Asunto(s)
Desmosomas , Enfermedad , Humanos , Adhesión Celular , Desmosomas/fisiología , Pénfigo
11.
Dev Cell ; 57(24): 2683-2698.e8, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36495876

RESUMEN

Sorting transmembrane cargo is essential for tissue development and homeostasis. However, mechanisms of intracellular trafficking in stratified epidermis are poorly understood. Here, we identify an interaction between the retromer endosomal trafficking component, VPS35, and the desmosomal cadherin, desmoglein-1 (Dsg1). Dsg1 is specifically expressed in stratified epidermis and, when properly localized on the plasma membrane of basal keratinocytes, promotes stratification. We show that the retromer drives Dsg1 recycling from the endo-lysosomal system to the plasma membrane to support human keratinocyte stratification. The retromer-enhancing chaperone, R55, promotes the membrane localization of Dsg1 and a trafficking-deficient mutant associated with a severe inflammatory skin disorder, enhancing its ability to promote stratification. In the absence of Dsg1, retromer association with and expression of the glucose transporter GLUT1 increases, exposing a potential link between Dsg1 deficiency and epidermal metabolism. Our work provides evidence for retromer function in epidermal regeneration, identifying it as a potential therapeutic target.


Asunto(s)
Desmogleína 1 , Epidermis , Humanos , Cadherinas/metabolismo , Desmogleína 1/metabolismo , Endosomas/metabolismo , Células Epidérmicas/metabolismo , Epidermis/metabolismo , Queratinocitos/metabolismo
12.
Curr Protoc ; 2(9): e536, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36165649

RESUMEN

Three-dimensional (3D) human organotypic skin cultures provide a physiologically relevant model that recapitulates in vivo skin features. Most commonly, organotypic skin cultures are created by seeding isolated epidermal keratinocytes onto a collagen/fibroblast plug and lifting to an air liquid interface. These conditions are sufficient to drive stratification and differentiation of the keratinocytes to form an epidermal-like sheet with remarkable similarities to human epidermis. Coupled with genetic or pharmacological treatments, these cultures provide a powerful tool for elucidating keratinocyte biology. Recent focus has been placed on increasing the utility of organotypic skin cultures by incorporating other cell types that are present in the skin, such as melanocytes, immune cells, and other cells. Here we describe a step-by-step protocol for the isolation of neonatal human epidermal keratinocytes and melanocytes from foreskins, and the creation of organotypic skin cultures that include both cell types. We also describe methods that can be used to assess melanocyte behavior in these organotypic cultures, including methods for whole mount staining, measurement of melanocyte dendricity, staining for pigment, and 5-bromo-2'-deoxyuridine (BrdU) labeling for identification of proliferating cells. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation of primary cells Alternate Protocol: Isolation of primary cells using differential trypsinization Basic Protocol 2: Organotypic culture protocol Support Protocol 1: Culture and maintenance of NHEKs and melanocytes Support Protocol 2: Lentiviral transduction of melanocytes Support Protocol 3: Retroviral transduction of NHEKs Support Protocol 4: Whole mount immunostaining protocol Support Protocol 5: Measuring melanocyte dendricity Support Protocol 6: Fontana-Masson staining protocol Support Protocol 7: BrdU labeling and staining.


Asunto(s)
Melanocitos , Piel , Bromodesoxiuridina/metabolismo , Colágeno/metabolismo , Humanos , Recién Nacido , Queratinocitos
13.
Front Cell Dev Biol ; 10: 903696, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35686051

RESUMEN

While classic cadherin-actin connections in adherens junctions (AJs) have ancient origins, intermediate filament (IF) linkages with desmosomal cadherins arose in vertebrate organisms. In this mini-review, we discuss how overlaying the IF-desmosome network onto the existing cadherin-actin network provided new opportunities to coordinate tissue mechanics with the positioning and function of chemical signaling mediators in the ErbB family of receptor tyrosine kinases. We focus in particular on the complex multi-layered outer covering of the skin, the epidermis, which serves essential barrier and stress sensing/responding functions in terrestrial vertebrates. We will review emerging data showing that desmosome-IF connections, AJ-actin interactions, ErbB family members, and membrane tension are all polarized across the multiple layers of the regenerating epidermis. Importantly, their integration generates differentiation-specific roles in each layer of the epidermis that dictate the form and function of the tissue. In the basal layer, the onset of the differentiation-specific desmosomal cadherin desmoglein 1 (Dsg1) dials down EGFR signaling while working with classic cadherins to remodel cortical actin cytoskeleton and decrease membrane tension to promote cell delamination. In the upper layers, Dsg1 and E-cadherin cooperate to maintain high tension and tune EGFR and ErbB2 activity to create the essential tight junction barrier. Our final outlook discusses the emerging appreciation that the desmosome-IF scaffold not only creates the architecture required for skin's physical barrier but also creates an immune barrier that keeps inflammation in check.

14.
J Cell Biol ; 221(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35175283

RESUMEN

The integration of cytoskeletal/adhesive networks is critical to epithelial mechanobiology. In this issue, Prechova et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202105146) demonstrate that the cytolinker protein plectin is essential for the construction of a cortical cytoskeletal architecture required for epithelial tensional homeostasis.


Asunto(s)
Actinas , Plectina , Actinas/metabolismo , Citoesqueleto/metabolismo , Filamentos Intermedios/metabolismo , Plectina/genética , Plectina/metabolismo
15.
Annu Rev Pathol ; 17: 47-72, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34425055

RESUMEN

Desmosomal cadherins are a recent evolutionary innovation that make up the adhesive core of highly specialized intercellular junctions called desmosomes. Desmosomal cadherins, which are grouped into desmogleins and desmocollins, are related to the classical cadherins, but their cytoplasmic domains are tailored for anchoring intermediate filaments instead of actin to sites of cell-cell adhesion. The resulting junctions are critical for resisting mechanical stress in tissues such as the skin and heart. Desmosomal cadherins also act as signaling hubs that promote differentiation and facilitate morphogenesis, creating more complex and effective tissue barriers in vertebrate tissues. Interference with desmosomal cadherin adhesive and supra-adhesive functions leads to a variety of autoimmune, hereditary, toxin-mediated, and malignant diseases. We review our current understanding of how desmosomal cadherins contribute to human health and disease, highlight gaps in our knowledge about their regulation and function, and introduce promising new directions toward combatting desmosome-related diseases.


Asunto(s)
Desmocolinas , Desmosomas , Cadherinas/fisiología , Adhesión Celular/fisiología , Desmosomas/fisiología , Humanos , Transducción de Señal
16.
J Clin Invest ; 132(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34905516

RESUMEN

Desmoglein 1 (Dsg1) is a cadherin restricted to stratified tissues of terrestrial vertebrates, which serve as essential physical and immune barriers. Dsg1 loss-of-function mutations in humans result in skin lesions and multiple allergies, and isolated patient keratinocytes exhibit increased proallergic cytokine expression. However, the mechanism by which genetic deficiency of Dsg1 causes chronic inflammation is unknown. To determine the systemic response to Dsg1 loss, we deleted the 3 tandem Dsg1 genes in mice. Whole transcriptome analysis of embryonic Dsg1-/- skin showed a delay in expression of adhesion/differentiation/keratinization genes at E17.5, a subset of which recovered or increased by E18.5. Comparing epidermal transcriptomes from Dsg1-deficient mice and humans revealed a shared IL-17-skewed inflammatory signature. Although the impaired intercellular adhesion observed in Dsg1-/- mice resembles that resulting from anti-Dsg1 pemphigus foliaceus antibodies, pemphigus skin lesions exhibit a weaker IL-17 signature. Consistent with the clinical importance of these findings, treatment of 2 Dsg1-deficient patients with an IL-12/IL-23 antagonist originally developed for psoriasis resulted in improvement of skin lesions. Thus, beyond impairing the physical barrier, loss of Dsg1 function through gene mutation results in a psoriatic-like inflammatory signature before birth, and treatment with a targeted therapy significantly improved skin lesions in patients.


Asunto(s)
Desmogleína 1/inmunología , Desmosomas/inmunología , Queratinocitos/inmunología , Pénfigo/inmunología , Células Th17/inmunología , Animales , Desmogleína 1/genética , Desmosomas/genética , Ratones , Pénfigo/genética
17.
Mol Biol Cell ; 32(19): 1824-1837, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34260281

RESUMEN

Desmosomes (DSMs), together with adherens junctions (AJs) and tight junctions (TJs), constitute the apical cell junctional complex (AJC). While the importance of the apical and basolateral polarity machinery in the organization of AJs and TJs is well established, how DSMs are positioned within the AJC is not understood. Here we use highly polarized DLD1 cells as a model to address how DSMs integrate into the AJC. We found that knockout (KO) of the desmosomal ARM protein Pkp3, but not other major DSM proteins, uncouples DSMs from the AJC without blocking DSM assembly. DLD1 cells also exhibit a prominent extraDSM pool of Pkp3, concentrated in tricellular (tC) contacts. Probing distinct apicobasal polarity pathways revealed that neither the DSM's association with AJC nor the extraDSM pool of Pkp3 are abolished in cells with defects in Scrib module proteins responsible for basolateral membrane development. However, a loss of the apical polarity protein, Par3, completely eliminates the extraDSM pool of Pkp3 and disrupts AJC localization of desmosomes, dispersing these junctions along the entire length of cell-cell contacts. Our data are consistent with a model whereby Par3 facilitates DSM assembly within the AJC, controlling the availability of an assembly competent pool of Pkp3 stored in tC contacts.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Uniones Adherentes/metabolismo , Proteínas de Ciclo Celular/metabolismo , Desmosomas/metabolismo , Placofilinas/metabolismo , Uniones Estrechas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Uniones Adherentes/genética , Animales , Células CACO-2 , Comunicación Celular/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Polaridad Celular/genética , Células Cultivadas , Desmosomas/genética , Perros , Células Epiteliales/metabolismo , Técnicas de Inactivación de Genes , Humanos , Células de Riñón Canino Madin Darby , Microscopía Fluorescente/métodos , Placofilinas/genética , Uniones Estrechas/genética
18.
Curr Biol ; 31(15): 3275-3291.e5, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107301

RESUMEN

The epidermis is a stratified epithelium in which structural and functional features are polarized across multiple cell layers. This type of polarity is essential for establishing the epidermal barrier, but how it is created and sustained is poorly understood. Previous work identified a role for the classic cadherin/filamentous-actin network in establishment of epidermal polarity. However, little is known about potential roles of the most prominent epidermal intercellular junction, the desmosome, in establishing epidermal polarity, in spite of the fact that desmosome constituents are patterned across the apical to basal cell layers. Here, we show that desmosomes and their associated intermediate filaments (IFs) are key regulators of mechanical polarization in epidermis, whereby basal and suprabasal cells experience different forces that drive layer-specific functions. Uncoupling desmosomes and IF or specific targeting of apical desmosomes through depletion of the superficial desmosomal cadherin, desmoglein 1, impedes basal stratification in an in vitro competition assay and suprabasal tight junction barrier functions in 3D reconstructed epidermis. Surprisingly, disengaging desmosomes from IF also accelerated the expression of differentiation markers, through precocious activation of the mechanosensitive transcriptional regulator serum response factor (SRF) and downstream activation of epidermal growth factor receptor family member ErbB2 by Src family kinase (SFK)-mediated phosphorylation. This Dsg1-SFK-ErbB2 axis also helps maintain tight junctions and barrier function later in differentiation. Together, these data demonstrate that the desmosome-IF network is a critical contributor to the cytoskeletal-adhesive machinery that supports the polarized function of the epidermis.


Asunto(s)
Desmosomas , Epidermis , Cadherinas , Desmoplaquinas , Desmosomas/fisiología , Células Epidérmicas , Epidermis/fisiología
19.
Mol Biol Cell ; 32(8): 753-768, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33596089

RESUMEN

The role of desmosomal cadherin desmocollin-2 (Dsc2) in regulating barrier function in intestinal epithelial cells (IECs) is not well understood. Here, we report the consequences of silencing Dsc2 on IEC barrier function in vivo using mice with inducible intestinal-epithelial-specific Dsc2 knockdown (KD) (Dsc2ERΔIEC). While the small intestinal gross architecture was maintained, loss of epithelial Dsc2 influenced desmosomal plaque structure, which was smaller in size and had increased intermembrane space between adjacent epithelial cells. Functional analysis revealed that loss of Dsc2 increased intestinal permeability in vivo, supporting a role for Dsc2 in the regulation of intestinal epithelial barrier function. These results were corroborated in model human IECs in which Dsc2 KD resulted in decreased cell-cell adhesion and impaired barrier function. It is noteworthy that Dsc2 KD cells exhibited delayed recruitment of desmoglein-2 (Dsg2) to the plasma membrane after calcium switch-induced intercellular junction reassembly, while E-cadherin accumulation was unaffected. Mechanistically, loss of Dsc2 increased desmoplakin (DP I/II) protein expression and promoted intermediate filament interaction with DP I/II and was associated with enhanced tension on desmosomes as measured by a Dsg2-tension sensor. In conclusion, we provide new insights on Dsc2 regulation of mechanical tension, adhesion, and barrier function in IECs.


Asunto(s)
Adhesión Celular/fisiología , Desmocolinas/metabolismo , Animales , Cadherinas/metabolismo , Línea Celular , Membrana Celular/metabolismo , Desmocolinas/genética , Desmocolinas/fisiología , Desmogleína 2/metabolismo , Cadherinas Desmosómicas/metabolismo , Cadherinas Desmosómicas/fisiología , Desmosomas/metabolismo , Humanos , Uniones Intercelulares/metabolismo , Mucosa Intestinal , Masculino , Ratones , Ratones Noqueados
20.
Curr Protoc Cell Biol ; 89(1): e115, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33044803

RESUMEN

Biochemical methods can reveal stable protein-protein interactions occurring within cells, but the ability to observe transient events and to visualize the subcellular localization of protein-protein interactions in cells and tissues in situ provides important additional information. The Proximity Ligation Assay® (PLA) offers the opportunity to visualize the subcellular location of such interactions at endogenous protein levels, provided that the probes that recognize the target proteins are within 40 nm. This sensitive technique not only elucidates protein-protein interactions, but also can reveal post-translational protein modifications. The technique is useful even in cases where material is limited, such as when paraffin-embedded clinical specimens are the only available material, as well as after experimental intervention in 2D and 3D model systems. Here we describe the basic protocol for using the commercially available Proximity Ligation Assay™ materials (Sigma-Aldrich, St. Louis, MO), and incorporate details to aid the researcher in successfully performing the experiments. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Proximity ligation assay Support Protocol 1: Antigen retrieval method for formalin-fixed, paraffin-embedded tissues Support Protocol 2: Creation of custom PLA probes using the Duolink™ In Situ Probemaker Kit when commercially available probes are not suitable Basic Protocol 2: Imaging, quantification, and analysis of PLA signals.


Asunto(s)
Bioensayo/métodos , Células/metabolismo , Especificidad de Órganos , Mapeo de Interacción de Proteínas/métodos , Procesamiento Proteico-Postraduccional , Animales , Antígenos/metabolismo , Formaldehído , Humanos , Imagenología Tridimensional , Adhesión en Parafina , Fijación del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...