Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 8(15): e1900234, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31273945

RESUMEN

Surface biopotentials collected from the human epidermis contain important information about human physiology, such as muscular, heart, and brain activities. However, commercially available wearable biomonitoring devices are generally composed of rigid hardware incompatible with the mechanical compliance of soft human tissues. Thin-film stretchable e-skin circuits that can interface the human skin represent an excellent alternative for long-term wearable biomonitoring. Here, a series of soft and stretchable electrodes are evaluated for their applicability in biopotential sensing. This includes conductive composites made of polydimethylsiloxane (PDMS) as a base substrate and conductive particles, i.e., carbon (cPDMS), silver (AgPDMS), anisotropic z-axis conductors made with silver-coated nickel particles (zPDMS), as well as a combination of a conductive tough hydrogel with PDMS, and finally ultrathin tattoo-like adhesive poly(vinyl alcohol)-coated films with stretchable biphasic Ag-EGaIn electrodes. These electrodes are compared between themselves and against the gold-standard Ag/AgCl and stainless steel electrodes, in order to assess relative performance in signal-to-noise ratio (SNR) during electrocardiography, and electrode-skin impedance for a range of frequencies. Results show a direct relation between conformity of the electrode-skin interface and the SNR value. An all-integrated biomonitoring patch with embedded processing and communication electronics, hydrogel electrodes, and a multilayer liquid metal circuit is presented for electromyography.


Asunto(s)
Fenómenos Fisiológicos de la Piel , Dispositivos Electrónicos Vestibles , Dimetilpolisiloxanos/química , Impedancia Eléctrica , Electrodos , Electromiografía/métodos , Humanos , Hidrogeles/química , Monitoreo Fisiológico , Níquel/química , Relación Señal-Ruido , Plata/química
2.
Lab Chip ; 19(5): 897-906, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30724280

RESUMEN

We tackle two well-known problems in the fabrication of stretchable electronics: interfacing soft circuit wiring with silicon chips and fabrication of multi-layer circuits. We demonstrate techniques that allow integration of embedded flexible printed circuit boards (FPCBs) populated with microelectronics into soft circuits composed of liquid metal (LM) interconnects. These methods utilize vertical interconnect accesses (VIAs) that are produced by filling LM alloy into cavities formed by laser ablation. The introduced technique is versatile, easy to perform, clean-room free, and results in reliable multi-layer stretchable hybrid circuits that can withstand over 80% of strain. We characterize the fabrication parameters of such VIAs and demonstrated several applications, including a stretchable touchpad and pressure detection film, and an all-integrated multi-layer electromyography (EMG) circuit patch with five active layers including acquisition electrodes, on-board processing and Bluetooth communication modules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...