Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem C Nanomater Interfaces ; 128(15): 6392-6400, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38655059

RESUMEN

Conjugated polymers composed of alternating electron donor and acceptor segments have come to dominate the materials being considered for organic photoelectrodes and solar cells, in large part because of their favorable near-infrared absorption. The prototypical electron-transporting push-pull polymer poly(NDI2OD-T2) (N2200) is one such material. While reasonably efficient organic solar cells can be fabricated with N2200 as the acceptor, it generally fails to contribute as much photocurrent from its absorption bands as the donor with which it is paired. Moreover, transient absorption studies have shown N2200 to have a consistently short excited-state lifetime (∼100 ps) that is dominated by a ground-state recovery. In this paper, we investigate whether these characteristics are intrinsic to the backbone structure of this polymer or if these are extrinsic effects from ubiquitous solution-phase and thin-film aggregates. We compare the solution-phase photophysics of N2200 with those of a pair of model compounds composed of alternating bithiophene (T2) donor and naphthalene diimide (NDI) acceptor units, NDI-T2-NDI and T2-NDI-T2, in a dilute solution. We find that the model compounds have even faster ground-state recovery dynamics (τ = 45, 27 ps) than the polymer (τ = 133 ps), despite remaining molecularly isolated in solution. In these molecules, as in the case of the N2200 polymer, the lowest excited state has a T2 to NDI charge-transfer (CT) character. Electronic-structure calculations indicate that the short lifetime of this state is due to fast nonradiative decay to the ground state (GS) promoted by strong CT-GS electronic coupling and strong electron-vibrational coupling with high-frequency (quantum) normal modes.

2.
Chem Mater ; 36(7): 3164-3176, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617805

RESUMEN

Cation disorder is an established feature of heterovalent ternary nitrides, a promising class of semiconductor materials. A recently synthesized wurtzite-family ternary nitride, ZnTiN2, shows potential for durable photoelectrochemical applications with a measured optical absorption onset of 2 eV, which is 1.4 eV lower than previously predicted, a large difference attributed to cation disorder. Here, we use first-principles calculations based on density functional theory to establish the role of cation disorder in the electronic and optical properties of ZnTiN2. We compute antisite defect arrangement formation energies for one hundred 128-atom supercells and analyze their trends and their effect on electronic structures, rationalizing experimental results. We demonstrate that charge imbalance created by antisite defects in Ti and N local environments, respectively, broadens the conduction and valence bands near the band edges, reducing the band gap relative to the cation-ordered limit, a general mechanism relevant to other multivalent ternary nitrides. Charge-imbalanced antisite defect arrangements that lead to N-centered tetrahedral motifs fully coordinated by Zn are the most energetically costly and introduce localized in-gap states; cation arrangements that better preserve local charge balance have smaller formation energies and have less impact on the electronic structure. Our work provides insights into the nature of cation disorder in the newly synthesized semiconductor ZnTiN2, with implications for its performance in energy applications, and provides a baseline for the future study of controlling cation order in ZnTiN2 and other ternary nitrides.

3.
Chem Commun (Camb) ; 60(8): 988-991, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38167668

RESUMEN

Delamination of the electron-transporting polymer N2200 from indium tin oxide (ITO) in aqueous electrolytes is mitigated by modifying ITO with an azide-functionalized phosphonic acid (PA) which, upon UV irradiation, reacts with the polymer. The optical, electrochemical, and spectroelectrochemical properties of N2200 thin films are retained in aqueous and non-aqueous media.

4.
ACS Energy Lett ; 8(12): 5116-5127, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38094752

RESUMEN

Polymer semiconductors are fascinating materials that could enable delivery of chemical fuels from water and sunlight, offering several potential advantages over their inorganic counterparts. These include extensive synthetic tunability of optoelectronic and redox properties and unique opportunities to tailor catalytic sites via chemical control over the nanoenvironment. Added to this is proven functionality of polymer semiconductors in solar cells, low-cost processability, and potential for large-area scalability. Herein we discuss recent progress on soft photoelectrochemical systems and define three critical knowledge gaps that must be closed for these materials to reach their full potential. We must (1) understand the influence of electrolyte penetration on photoinduced charge separation, transport, and recombination, (2) learn to exploit the swollen polymer/electrolyte interphase to drive selective fuel formation, and (3) establish co-design criteria for soft materials that sustain function in the face of harsh chemical challenges. Achieving these formidable goals would enable tailorable systems for driving photoelectrochemical fuel production at scale.

5.
J Am Chem Soc ; 144(30): 13673-13687, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35857885

RESUMEN

Photoelectrochemical fuel generation is a promising route to sustainable liquid fuels produced from water and captured carbon dioxide with sunlight as the energy input. Development of these technologies requires photoelectrode materials that are both photocatalytically active and operationally stable in harsh oxidative and/or reductive electrochemical environments. Such photocatalysts can be discovered based on co-design principles, wherein design for stability is based on the propensity for the photocatalyst to self-passivate under operating conditions and design for photoactivity is based on the ability to integrate the photocatalyst with established semiconductor substrates. Here, we report on the synthesis and characterization of zinc titanium nitride (ZnTiN2) that follows these design rules by having a wurtzite-derived crystal structure and showing self-passivating surface oxides created by electrochemical polarization. The sputtered ZnTiN2 thin films have optical absorption onsets below 2 eV and n-type electrical conduction of 3 S/cm. The band gap of this material is reduced from the 3.36 eV theoretical value by cation-site disorder, and the impact of cation antisites on the band structure of ZnTiN2 is explored using density functional theory. Under electrochemical polarization, the ZnTiN2 surfaces have TiO2- or ZnO-like character, consistent with Materials Project Pourbaix calculations predicting the formation of stable solid phases under near-neutral pH. These results show that ZnTiN2 is a promising candidate for photoelectrochemical liquid fuel generation and demonstrate a new materials design approach to other photoelectrodes with self-passivating native operational surface chemistry.

6.
Chem Sci ; 12(33): 11146-11156, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34522312

RESUMEN

Photoinduced electron transfer into mesoporous oxide substrates is well-known to occur efficiently for both singlet and triplet excited states in conventional metal-to-ligand charge transfer (MLCT) dyes. However, in all-organic dyes that have the potential for producing two triplet states from one absorbed photon, called singlet fission dyes, the dynamics of electron injection from singlet vs. triplet excited states has not been elucidated. Using applied bias transient absorption spectroscopy with an anthradithiophene-based chromophore (ADT-COOH) adsorbed to mesoporous indium tin oxide (nanoITO), we modulate the driving force and observe changes in electron injection dynamics. ADT-COOH is known to undergo fast triplet pair formation in solid-state films. We find that the electronic coupling at the interface is roughly one order of magnitude weaker for triplet vs. singlet electron injection, which is potentially related to the highly localized nature of triplets without significant charge-transfer character. Through the use of applied bias on nanoITO:ADT-COOH films, we map the electron injection rate constant dependence on driving force, finding negligible injection from triplets at zero bias due to competing recombination channels. However, at driving forces greater than -0.6 eV, electron injection from the triplet accelerates and clearly produces a trend with increased applied bias that matches predictions from Marcus theory with a metallic acceptor.

7.
J Am Chem Soc ; 142(18): 8421-8430, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32279492

RESUMEN

Nitride materials feature strong chemical bonding character that leads to unique crystal structures, but many ternary nitride chemical spaces remain experimentally unexplored. The search for previously undiscovered ternary nitrides is also an opportunity to explore unique materials properties, such as transitions between cation-ordered and -disordered structures, as well as to identify candidate materials for optoelectronic applications. Here, we present a comprehensive experimental study of MgSnN2, an emerging II-IV-N2 compound, for the first time mapping phase composition and crystal structure, and examining its optoelectronic properties computationally and experimentally. We demonstrate combinatorial cosputtering of cation-disordered, wurtzite-type MgSnN2 across a range of cation compositions and temperatures, as well as the unexpected formation of a secondary, rocksalt-type phase of MgSnN2 at Mg-rich compositions and low temperatures. A computational structure search shows that the rocksalt-type phase is substantially metastable (>70 meV/atom) compared to the wurtzite-type ground state. Spectroscopic ellipsometry reveals optical absorption onsets around 2 eV, consistent with band gap tuning via cation disorder. Finally, we demonstrate epitaxial growth of a mixed wurtzite-rocksalt MgSnN2 on GaN, highlighting an opportunity for polymorphic control via epitaxy. Collectively, these findings lay the groundwork for further exploration of MgSnN2 as a model ternary nitride, with controlled polymorphism, and for device applications, enabled by control of optoelectronic properties via cation ordering.

8.
J Am Chem Soc ; 138(51): 16800-16808, 2016 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-27982572

RESUMEN

Thin films with tunable and homogeneous composition are required for many applications. We report the synthesis and characterization of a new class of compositionally homogeneous thin films that are amorphous solid solutions of Al2O3 and transition metal oxides (TMOx) including VOx, CrOx, MnOx, Fe2O3, CoOx, NiO, CuOx, and ZnO. The synthesis is enabled by the rapid decomposition of molecular transition-metal nitrates TM(NO3)x at low temperature along with precondensed oligomeric Al(OH)x(NO3)3-x cluster species, both of which can be processed from aq solution. The films are dense, ultrasmooth (Rrms < 1 nm, near 0.1 nm in many cases), and atomically mixed amorphous metal-oxide alloys over a large composition range. We assess the chemical principles that favor the formation of amorphous homogeneous films over rougher phase-segregated nanocrystalline films. The synthesis is easily extended to other compositions of transition and main-group metal oxides. To demonstrate versatility, we synthesized amorphous V0.1Cr0.1Mn0.1Fe0.1Zn0.1Al0.5Ox and V0.2Cr0.2Fe0.2Al0.4Ox with Rrms ≈ 0.1 nm and uniform composition. The combination of ideal physical properties (dense, smooth, uniform) and broad composition tunability provides a platform for film synthesis that can be used to study fundamental phenomena when the effects of transition metal cation identity, solid-state concentration of d-electrons or d-states, and/or crystallinity need to be controlled. The new platform has broad potential use in controlling interfacial phenomena such as electron transfer in solar-cell contacts or surface reactivity in heterogeneous catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...