RESUMEN
OBJECTIVE: Innate immune responses may be involved in the earliest phases of type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: To test whether blocking innate immaune cells modulated progression of the disease, we randomly assigned 273 individuals with stage 1 T1D to treatment with hydroxychloroquine (n = 183; 5 mg/kg per day to a maximum of 400 mg) or placebo (n = 90) and assessed whether hydroxychloroquine treatment delayed or prevented progression to stage 2 T1D (i.e., two or more islet autoantibodies with abnormal glucose tolerance). RESULTS: After a median follow-up of 23.3 months, the trial was stopped prematurely by the data safety monitoring board because of futility. There were no safety concerns in the hydroxychloroquine arm, including in annual ophthalmologic examinations. Preplanned secondary analyses showed a transient decrease in the glucose average area under the curve to oral glucose in the hydroxychloroquine-treated arm at month 6 and reduced titers of anti-GAD and anti-insulin autoantibodies and acquisition of positive autoantibodies in the hydroxychloroquine arm (P = 0.032). CONCLUSIONS: We conclude that hydroxychloroquine does not delay progression to stage 2 T1D in individuals with stage 1 disease. Drug treatment reduces the acquisition of additional autoantibodies and the titers of autoantibodies to GAD and insulin.
Asunto(s)
Diabetes Mellitus Tipo 1 , Hidroxicloroquina , Humanos , Hidroxicloroquina/uso terapéutico , Autoanticuerpos , Insulina , GlucosaRESUMEN
OBJECTIVE: The MHC region harbors the strongest loci for latent autoimmune diabetes in adults (LADA); however, the strength of association is likely attenuated compared with that for childhood-onset type 1 diabetes. In this study, we recapitulate independent effects in the MHC class I region in a population with type 1 diabetes and then determine whether such conditioning in LADA yields potential genetic discriminators between the two subtypes within this region. RESEARCH DESIGN AND METHODS: Chromosome 6 was imputed using SNP2HLA, with conditional analysis performed in type 1 diabetes case subjects (n = 1,985) and control subjects (n = 2,219). The same approach was applied to a LADA cohort (n = 1,428) using population-based control subjects (n = 2,850) and in a separate replication cohort (656 type 1 diabetes case, 823 LADA case, and 3,218 control subjects). RESULTS: The strongest associations in the MHC class II region (rs3957146, ß [SE] = 1.44 [0.05]), as well as the independent effect of MHC class I genes, on type 1 diabetes risk, particularly HLA-B*39 (ß [SE] = 1.36 [0.17]), were confirmed. The conditional analysis in LADA versus control subjects showed significant association in the MHC class II region (rs3957146, ß [SE] = 1.14 [0.06]); however, we did not observe significant independent effects of MHC class I alleles in LADA. CONCLUSIONS: In LADA, the independent effects of MHC class I observed in type 1 diabetes were not observed after conditioning on the leading MHC class II associations, suggesting that the MHC class I association may be a genetic discriminator between LADA and childhood-onset type 1 diabetes.
Asunto(s)
Diabetes Mellitus Tipo 1/genética , Genes MHC Clase II/genética , Genes MHC Clase I/genética , Pruebas Genéticas , Diabetes Autoinmune Latente del Adulto/genética , Adolescente , Adulto , Edad de Inicio , Alelos , Estudios de Casos y Controles , Niño , Preescolar , Cromosomas Humanos Par 6/genética , Estudios de Cohortes , Diabetes Mellitus Tipo 1/clasificación , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/epidemiología , Diagnóstico Diferencial , Femenino , Estudios de Asociación Genética , Pruebas Genéticas/métodos , Humanos , Diabetes Autoinmune Latente del Adulto/clasificación , Diabetes Autoinmune Latente del Adulto/diagnóstico , Masculino , Polimorfismo de Nucleótido Simple , Adulto JovenRESUMEN
In spite of tolerance mechanisms, some individuals develop T-cell-mediated autoimmunity. Posttranslational modifications that increase the affinity of epitope presentation and/or recognition represent one means through which self-tolerance mechanisms can be circumvented. We investigated T-cell recognition of peptides that correspond to modified ß-cell antigens in subjects with type 1 diabetes. Modified peptides elicited enhanced proliferation by autoreactive T-cell clones. Endoplasmic reticulum (ER) stress in insulinoma cells increased cytosolic calcium and the activity of tissue transglutaminase 2 (tTG2). Furthermore, stressed human islets and insulinomas elicited effector responses from T cells specific for modified peptides, suggesting that ER stress-derived tTG2 activity generated deamidated neoepitopes that autoreactive T cells recognized. Patients with type 1 diabetes had large numbers of T cells specific for these epitopes in their peripheral blood. T cells with these specificities were also isolated from the pancreatic draining lymph nodes of cadaveric donors with established diabetes. Together, these results suggest that self-antigens are enzymatically modified in ß-cells during ER stress, giving rise to modified epitopes that could serve to initiate autoimmunity or to further broaden the antigenic repertoire, activating potentially pathogenic CD4+ T cells that may not be effectively eliminated by negative selection.