Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bio Protoc ; 14(7): e4964, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38618179

RESUMEN

Camelina sativa, a Brassicaceae family crop, is used for fodder, human food, and biofuels. Its relatively high resistance to abiotic and biotic stresses, as well as being a climate-resilient oilseed crop, has contributed to its popularity. Camelina's seed yield and oil contents have been improved using various technologies like RNAi and CRISPR/Cas9 genome editing. A stable transformation system for protein localization and other cell autonomous investigations, on the other hand, is tedious and time consuming. This study describes a transient gene expression protocol for Camelina sativa cultivar DH55 leaves using Agrobacterium strain C58C1. The method is suitable for subcellular protein localization and colocalization studies and can be used with both constitutive and chemically induced genes. We report the subcellular localization of the N-terminal ER membrane signal anchor region (1-32 aa) of the At3G28580 gene-encoded protein from Arabidopsis in intact leaves and the expression and localization of other known organelle markers. This method offers a fast and convenient way to study proteins in the commercially important Camelina crop system. Key features • This method is based on the approach of Zhang et al. [1] and has been optimized for bioenergy crop Camelina species. • A constitutive and inducible transient gene expression in the hexaploid species Camelina sativa cultivar DH55. • Requires only 16-18 days to complete with high efficacy. Graphical overview.

2.
STAR Protoc ; 5(2): 102944, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38470913

RESUMEN

Understanding the generation, movement, uptake, and perception of mobile defense signals is key for unraveling the systemic resistance programs in flowering plants against pathogens. Here, we present a protocol for analyzing the movement and uptake of isotopically labeled signaling molecule azelaic acid (AZA) in Arabidopsis thaliana. We describe steps to assess 14C-AZA uptake into leaf discs and its movement from local to systemic tissues. We also detail the assay for uptake and movement of 2H-AZA from roots to the shoot. For complete details on the use and execution of this protocol, please refer to Cecchini et al.1,2.

3.
J Vis Exp ; (197)2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37677009

RESUMEN

The delivery of biomolecules and impermeable dyes to intact plants is a major challenge. Nanomaterials are up-and-coming tools for the delivery of DNA to plants. As exciting as these new tools are, they have yet to be widely applied. Nanomaterials fabricated on rigid substrate (backing) are particularly difficult to successfully apply to curved plant structures. This study describes the process for microfabricating vertically aligned carbon nanofiber arrays and transferring them from a rigid to a flexible substrate. We detail and demonstrate how these fibers (on either rigid or flexible substrates) can be used for transient transformation or dye (e.g., fluorescein) delivery to plants. We show how VACNFs can be transferred from rigid silicon substrate to a flexible SU-8 epoxy substrate to form flexible VACNF arrays. To overcome the hydrophobic nature of SU-8, fibers in the flexible film were coated with a thin silicon oxide layer (2-3 nm). To use these fibers for delivery to curved plant organs, we deposit a 1 µL droplet of dye or DNA solution on the fiber side of VACNF films, wait 10 min, place the films on the plant organ and employ a swab with a rolling motion to drive fibers into plant cells. With this method, we have achieved dye and DNA delivery in plant organs with curved surfaces.


Asunto(s)
Nanofibras , Nanoestructuras , Películas Cinematográficas , Carbono , Colorantes
4.
CBE Life Sci Educ ; 22(2): ar25, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37058442

RESUMEN

In-person undergraduate research experiences (UREs) promote students' integration into careers in life science research. In 2020, the COVID-19 pandemic prompted institutions hosting summer URE programs to offer them remotely, raising questions about whether undergraduates who participate in remote research can experience scientific integration and whether they might perceive doing research less favorably (i.e., not beneficial or too costly). To address these questions, we examined indicators of scientific integration and perceptions of the benefits and costs of doing research among students who participated in remote life science URE programs in Summer 2020. We found that students experienced gains in scientific self-efficacy pre- to post-URE, similar to results reported for in-person UREs. We also found that students experienced gains in scientific identity, graduate and career intentions, and perceptions of the benefits of doing research only if they started their remote UREs at lower levels on these variables. Collectively, students did not change in their perceptions of the costs of doing research despite the challenges of working remotely. Yet students who started with low cost perceptions increased in these perceptions. These findings indicate that remote UREs can support students' self-efficacy development, but may otherwise be limited in their potential to promote scientific integration.


Asunto(s)
COVID-19 , Estudiantes , Humanos , Pandemias
5.
Front Plant Sci ; 13: 1068438, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523630

RESUMEN

Immunity in plants arises from defense regulatory circuits that can be conceptualized as modules. Both the types (and isolates) of pathogen and the repertoire of plant receptors may cause different modules to be activated and affect the magnitude of activation. Two major defense enzymes of Arabidopsis are ALD1 and ICS1/SID2. ALD1 is an aminotransferase needed for producing the metabolites pipecolic acid, hydroxy-pipecolic acid, and possibly other defense signals. ICS1/SID2 produces isochorismate, an intermediate in the synthesis of salicylic acid (SA) and SA-derivatives. Metabolites resulting from the activation of these enzymes are found in petiole exudates and may serve as priming signals for systemic disease resistance in Arabidopsis. Mutants lacking ALD1 are known to have reduced SA accumulation. To further investigate the role of ALD1 in relation to the SA-related module, immunity phenotypes of double mutants that disrupt ALD1 and ICS1/SID2 or SA perception by NPR1 were compared with each single mutant after infection by different Pseudomonas strains. Exudates collected from these mutants after infection were also evaluated for their ability to confer disease resistance when applied to wild-type plants. During infection with virulent or attenuated strains, the loss of ALD1 does not increase the susceptibility of npr1 or sid2 mutants, suggesting the main role of ALD1 in this context is in amplifying the SA-related module. In contrast, after an infection that leads to strong pathogen recognition via the cytoplasmic immune receptor RPS2, ALD1 acts additively with both NPR1 and ICS1/SID2 to suppress pathogen growth. The additive effects are observed in early basal defense responses as well as SA-related events. Thus, there are specific conditions that dictate whether the modules independently contribute to immunity to provide additive protection during infection. In the exudate experiments, intact NPR1 and ICS1/SID2, but not ALD1 in the donor plants were needed for conferring immunity. Mixing exudates showed that loss of SID2 yields exudates that suppress active exudates from wild-type or ald1 plants. This indicates that ICS1/SID2 may not only lead to positive defense signals, but also prevent a suppressive signal(s).

6.
Front Plant Sci ; 13: 1051340, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507425

RESUMEN

Transient transformation in plants is a useful process for evaluating gene function. However, there is a scarcity of minimally perturbing methods for gene delivery that can be used on multiple organs, plant species, and non-excised tissues. We pioneered and demonstrated the use of vertically aligned carbon nanofiber (VACNF) arrays to efficiently perform transient transformation of different tissues with DNA constructs in multiple plant species. The VACNFs permeabilize plant tissue transiently to allow molecules into cells without causing a detectable stress response. We successfully delivered DNA into leaves, roots and fruit of five plant species (Arabidopsis, poplar, lettuce, Nicotiana benthamiana, and tomato) and confirmed accumulation of the encoded fluorescent proteins by confocal microscopy. Using this system, it is possible to transiently transform plant cells with both small and large plasmids. The method is successful for species recalcitrant to Agrobacterium-mediated transformation. VACNFs provide simple, reliable means of DNA delivery into a variety of plant organs and species.

7.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232932

RESUMEN

Salicylic acid (SA) is a hormone that modulates plant defenses by inducing changes in gene expression. The mechanisms that control SA accumulation are essential for understanding the defensive process. TGA transcription factors from clade II in Arabidopsis, which include the proteins TGA2, TGA5, and TGA6, are known to be key positive mediators for the transcription of genes such as PR-1 that are induced by SA application. However, unexpectedly, stress conditions that induce SA accumulation, such as infection with the avirulent pathogen P. syringae DC3000/AvrRPM1 and UV-C irradiation, result in enhanced PR-1 induction in plants lacking the clade II TGAs (tga256 plants). Increased PR-1 induction was accompanied by enhanced isochorismate synthase-dependent SA production as well as the upregulation of several genes involved in the hormone's accumulation. In response to avirulent P. syringae, PR-1 was previously shown to be controlled by both SA-dependent and -independent pathways. Therefore, the enhanced induction of PR-1 (and other defense genes) and accumulation of SA in the tga256 mutant plants is consistent with the clade II TGA factors providing negative feedback regulation of the SA-dependent and/or -independent pathways. Together, our results indicate that the TGA transcription factors from clade II negatively control SA accumulation under stress conditions that induce the hormone production. Our study describes a mechanism involving old actors playing new roles in regulating SA homeostasis under stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Hormonas/metabolismo , Mutación , Enfermedades de las Plantas/genética , Pseudomonas syringae , Ácido Salicílico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Plant Physiol ; 190(1): 860-881, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35642916

RESUMEN

Plant plastids generate signals, including some derived from lipids, that need to be mobilized to effect signaling. We used informatics to discover potential plastid membrane proteins involved in microbial responses in Arabidopsis (Arabidopsis thaliana). Among these are proteins co-regulated with the systemic immunity component AZELAIC ACID INDUCED 1, a hybrid proline-rich protein (HyPRP), and HyPRP superfamily members. HyPRPs have a transmembrane domain, a proline-rich region (PRR), and a lipid transfer protein domain. The precise subcellular location(s) and function(s) are unknown for most HyPRP family members. As predicted by informatics, a subset of HyPRPs has a pool of proteins that target plastid outer envelope membranes via a mechanism that requires the PRR. Additionally, two HyPRPs may be associated with thylakoid membranes. Most of the plastid- and nonplastid-localized family members also have pools that localize to the endoplasmic reticulum, plasma membrane, or plasmodesmata. HyPRPs with plastid pools regulate, positively or negatively, systemic immunity against the pathogen Pseudomonas syringae. HyPRPs also regulate the interaction with the plant growth-promoting rhizobacteria Pseudomonas simiae WCS417 in the roots to influence colonization, root system architecture, and/or biomass. Thus, HyPRPs have broad and distinct roles in immunity, development, and growth responses to microbes and reside at sites that may facilitate signal molecule transport.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Plastidios/metabolismo , Prolina/metabolismo , Pseudomonas syringae/metabolismo
9.
CBE Life Sci Educ ; 21(1): ar1, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34978923

RESUMEN

The COVID-19 pandemic shut down undergraduate research programs across the United States. A group of 23 colleges, universities, and research institutes hosted remote undergraduate research programs in the life sciences during Summer 2020. Given the unprecedented offering of remote programs, we carried out a study to describe and evaluate them. Using structured templates, we documented how programs were designed and implemented, including who participated. Through focus groups and surveys, we identified programmatic strengths and shortcomings as well as recommendations for improvements from students' perspectives. Strengths included the quality of mentorship, opportunities for learning and professional development, and a feeling of connection with a larger community. Weaknesses included limited cohort building, challenges with insufficient structure, and issues with technology. Although all programs had one or more activities related to diversity, equity, inclusion, and justice, these topics were largely absent from student reports even though programs coincided with a peak in national consciousness about racial inequities and structural racism. Our results provide evidence for designing remote Research Experiences for Undergraduates (REUs) that are experienced favorably by students. Our results also indicate that remote REUs are sufficiently positive to further investigate their affordances and constraints, including the potential to scale up offerings, with minimal concern about disenfranchising students.


Asunto(s)
COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Estudiantes , Racismo Sistemático , Estados Unidos
10.
PLoS Pathog ; 17(11): e1010017, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34724007

RESUMEN

The plant pathogen Pseudomonas syringae secretes multiple effectors that modulate plant defenses. Some effectors trigger defenses due to specific recognition by plant immune complexes, whereas others can suppress the resulting immune responses. The HopZ3 effector of P. syringae pv. syringae B728a (PsyB728a) is an acetyltransferase that modifies not only components of plant immune complexes, but also the Psy effectors that activate these complexes. In Arabidopsis, HopZ3 acetylates the host RPM1 complex and the Psy effectors AvrRpm1 and AvrB3. This study focuses on the role of HopZ3 during tomato infection. In Psy-resistant tomato, the main immune complex includes PRF and PTO, a RIPK-family kinase that recognizes the AvrPto effector. HopZ3 acts as a virulence factor on tomato by suppressing AvrPto1Psy-triggered immunity. HopZ3 acetylates AvrPto1Psy and the host proteins PTO, SlRIPK and SlRIN4s. Biochemical reconstruction and site-directed mutagenesis experiments suggest that acetylation acts in multiple ways to suppress immune signaling in tomato. First, acetylation disrupts the critical AvrPto1Psy-PTO interaction needed to initiate the immune response. Unmodified residues at the binding interface of both proteins and at other residues needed for binding are acetylated. Second, acetylation occurs at residues important for AvrPto1Psy function but not for binding to PTO. Finally, acetylation reduces specific phosphorylations needed for promoting the immune-inducing activity of HopZ3's targets such as AvrPto1Psy and PTO. In some cases, acetylation competes with phosphorylation. HopZ3-mediated acetylation suppresses the kinase activity of SlRIPK and the phosphorylation of its SlRIN4 substrate previously implicated in PTO-signaling. Thus, HopZ3 disrupts the functions of multiple immune components and the effectors that trigger them, leading to increased susceptibility to infection. Finally, mass spectrometry used to map specific acetylated residues confirmed HopZ3's unusual capacity to modify histidine in addition to serine, threonine and lysine residues.


Asunto(s)
Acetiltransferasas/metabolismo , Complejo Antígeno-Anticuerpo/inmunología , Proteínas Bacterianas/antagonistas & inhibidores , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Pseudomonas syringae/patogenicidad , Solanum lycopersicum/inmunología , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo
11.
J Exp Bot ; 72(7): 2710-2726, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33463678

RESUMEN

The Arabidopsis plastid-localized ALD1 protein acts in the lysine catabolic pathway that produces infection-induced pipecolic acid (Pip), Pip derivatives, and basal non-Pip metabolite(s). ALD1 is indispensable for disease resistance associated with Pseudomonas syringae infections of naïve plants as well as those previously immunized by a local infection, a phenomenon called systemic acquired resistance (SAR). Pseudomonas syringae is known to associate with mesophyll as well as epidermal cells. To probe the importance of epidermal cells in conferring bacterial disease resistance, we studied plants in which ALD1 was only detectable in the epidermal cells of specific leaves. Local disease resistance and many features of SAR were restored when ALD1 preferentially accumulated in the epidermal plastids at immunization sites. Interestingly, SAR restoration occurred without appreciable accumulation of Pip or known Pip derivatives in secondary distal leaves. Our findings establish that ALD1 has a non-autonomous effect on pathogen growth and defense activation. We propose that ALD1 is sufficient in the epidermis of the immunized leaves to activate SAR, but basal ALD1 and possibly a non-Pip metabolite(s) are also needed at all infection sites to fully suppress bacterial growth. Thus, epidermal plastids that contain ALD1 play a key role in local and whole-plant immune signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Resistencia a la Enfermedad , Epidermis , Enfermedades de las Plantas , Plastidios , Pseudomonas syringae
12.
Plant J ; 105(6): 1615-1629, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33342031

RESUMEN

The proper subcellular localization of defense factors is an important part of the plant immune system. A key component for systemic resistance, lipid transfer protein (LTP)-like AZI1, is needed for the systemic movement of the priming signal azelaic acid (AZA) and a pool of AZI1 exists at the site of AZA production, the plastid envelope. Moreover, after systemic defense-triggering infections, the proportion of AZI1 localized to plastids increases. However, AZI1 does not possess a classical plastid transit peptide that can explain its localization. Instead, AZI1 uses a bipartite N-terminal signature that allows for its plastid targeting. Furthermore, the kinases MPK3 and MPK6, associated with systemic immunity, promote the accumulation of AZI1 at plastids during priming induction. Our results indicate the existence of a mode of plastid targeting possibly related to defense responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología
13.
Mol Plant Microbe Interact ; 32(1): 86-94, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30156481

RESUMEN

Local interactions between individual plant organs and diverse microorganisms can lead to whole plant immunity via the mobilization of defense signals. One such signal is the plastid lipid-derived oxylipin azelaic acid (AZA). Arabidopsis lacking AZI1 or EARLI1, related lipid transfer family proteins, exhibit reduced AZA transport among leaves and cannot mount systemic immunity. AZA has been detected in roots as well as leaves. Therefore, the present study addresses the effects on plants of AZA application to roots. AZA but not the structurally related suberic acid inhibits root growth when directly in contact with roots. Treatment of roots with AZA also induces resistance to Pseudomonas syringae in aerial tissues. These effects of AZA on root growth and disease resistance depend, at least partially, on AZI1 and EARLI1. AZI1 in roots localizes to plastids, similar to its known location in leaves. Interestingly, kinases previously shown to modify AZI1 in vitro, MPK3 and MPK6, are also needed for AZA-induced root-growth inhibition and aboveground immunity. Finally, deuterium-labeled AZA applied to the roots does not move to aerial tissues. Thus, AZA application to roots triggers systemic immunity through an AZI1/EARLI1/MPK3/MPK6-dependent pathway and AZA effects may involve one or more additional mobile signals.


Asunto(s)
Arabidopsis , Ácidos Dicarboxílicos , Inmunidad de la Planta , Pseudomonas syringae , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Ácidos Dicarboxílicos/farmacología , Inmunidad de la Planta/efectos de los fármacos , Pseudomonas syringae/fisiología
14.
Bio Protoc ; 9(10): e3236, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33654765

RESUMEN

The plant immune system is essential for plants to perceive and defend against bacterial, fungal and insect pests and pathogens. Induced systemic resistance (ISR) is a systemic immune response that occurs upon root colonization by beneficial microbes. A well-studied model for ISR is the association of specific beneficial strains of Pseudomonas spp. with the reference plant Arabidopsis thaliana. Here, we describe a robust, increased throughput, bioassay to study ISR against the bacterial pathogen Pseudomonas cannabina pv. alisalensis (formerly called Pseudomonas syringae pv. maculicola) strain ES4326 and the herbivore Trichoplusia ni by inoculating Pseudomonas simiae strain WCS417 (formerly called Pseudomonas fluorescens WCS417) on Arabidopsis plants grown in Jiffy-7® peat pellets. While most commonly used for Pseudomonas-triggered ISR on Arabidopsis, this assay is effective for diverse rhizosphere bacterial strains, plant species, pathogens and herbivores.

15.
Plant Physiol ; 176(3): 2515-2531, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29438088

RESUMEN

Salicylic acid (SA) is a major defense signal in plants. In Arabidopsis (Arabidopsis thaliana), the chloroplast-localized isochorismate pathway is the main source of SA biosynthesis during abiotic stress or pathogen infections. In the first step of the pathway, the enzyme ISOCHORISMATE SYNTHASE1 (ICS1) converts chorismate to isochorismate. An unknown enzyme subsequently converts isochorismate to SA. Here, we show that ICS1 protein levels increase during UV-C stress. To identify proteins that may play roles in SA production by regulating ICS1, we analyzed proteins that coimmunoprecipitated with ICS1 via mass spectrometry. The ICS1 complexes contained a large number of peptides from the PROHIBITIN (PHB) protein family, with PHB3 the most abundant. PHB proteins have diverse biological functions that include acting as scaffolds for protein complex formation and stabilization. PHB3 was reported previously to localize to mitochondria. Using fractionation, protease protection, and live imaging, we show that PHB3 also localizes to chloroplasts, where ICS1 resides. Notably, loss of PHB3 function led to decreased ICS1 protein levels in response to UV-C stress. However, ICS1 transcript levels remain unchanged, indicating that ICS1 is regulated posttranscriptionally. The phb3 mutant displayed reduced levels of SA, the SA-regulated protein PR1, and hypersensitive cell death in response to UV-C and avirulent strains of Pseudomonas syringae and, correspondingly, supported increased growth of P. syringae The expression of a PHB3 transgene in the phb3 mutant complemented all of these phenotypes. We suggest a model in which the formation of PHB3-ICS1 complexes stabilizes ICS1 to promote SA production in response to stress.


Asunto(s)
Arabidopsis/metabolismo , Transferasas Intramoleculares/metabolismo , Proteínas Represoras/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Transferasas Intramoleculares/genética , Mitocondrias/metabolismo , Mutación , Plantas Modificadas Genéticamente , Prohibitinas , Pseudomonas syringae/patogenicidad , Proteínas Represoras/genética , Estrés Fisiológico , Rayos Ultravioleta
16.
Biochim Biophys Acta Proteins Proteom ; 1866(2): 224-229, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29050961

RESUMEN

Enzyme-dependent post-translational modifications (PTMs) mediate the cellular regulation of proteins and can be discovered using proteomics. However, even where the peptides of interest can be enriched for analysis with state-of-the-art LC-MS/MS tools and informatics, only a fraction of peptide ions can be identified confidently. Thus, many PTM sites remain undiscovered and unconfirmed. In this minireview, we use a case study to discuss how the use of inclusion lists, turning off isotopic exclusion, and manual validation significantly increased depth of coverage, facilitating discovery of acetylation sites in targets of an acetyltransferase virulence factor. These underutilized strategies have the potential to help answer many mechanistic biological questions that large-scale proteomic studies cannot.


Asunto(s)
Péptidos/análisis , Procesamiento Proteico-Postraduccional , Espectrometría de Masas en Tándem/métodos , Acetilación , Animales , Cromatografía Liquida/métodos , Humanos , Péptidos/química , Péptidos/metabolismo
17.
J Exp Bot ; 68(7): 1769-1783, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28521013

RESUMEN

Diverse pathogen-derived molecules, such as bacterial flagellin and its conserved peptide flg22, are recognized in plants via plasma membrane receptors and induce both local and systemic immune responses. The fate of such ligands was unknown: whether and by what mechanism(s) they enter plant cells and whether they are transported to distal tissues. We used biologically active fluorophore and radiolabeled peptides to establish that flg22 moves to distal organs with the closest vascular connections. Remarkably, entry into the plant cell via endocytosis together with the FLS2 receptor is needed for delivery to vascular tissue and long-distance transport of flg22. This contrasts with known routes of long distance transport of other non-cell-permeant molecules in plants, which require membrane-localized transporters for entry to vascular tissue. Thus, a plasma membrane receptor acts as a transporter to enable access of its ligand to distal trafficking routes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flagelina/metabolismo , Proteínas Quinasas/metabolismo , Transporte de Proteínas , Endocitosis , Ligandos
18.
Mol Plant Microbe Interact ; 30(7): 515-516, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28398839

RESUMEN

Reader Comments | Submit a Comment The white paper reports the deliberations of a workshop focused on biotic challenges to plant health held in Washington, D.C. in September 2016. Ensuring health of food plants is critical to maintaining the quality and productivity of crops and for sustenance of the rapidly growing human population. There is a close linkage between food security and societal stability; however, global food security is threatened by the vulnerability of our agricultural systems to numerous pests, pathogens, weeds, and environmental stresses. These threats are aggravated by climate change, the globalization of agriculture, and an over-reliance on nonsustainable inputs. New analytical and computational technologies are providing unprecedented resolution at a variety of molecular, cellular, organismal, and population scales for crop plants as well as pathogens, pests, beneficial microbes, and weeds. It is now possible to both characterize useful or deleterious variation as well as precisely manipulate it. Data-driven, informed decisions based on knowledge of the variation of biotic challenges and of natural and synthetic variation in crop plants will enable deployment of durable interventions throughout the world. These should be integral, dynamic components of agricultural strategies for sustainable agriculture.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo , Abastecimiento de Alimentos , Investigación Biomédica Traslacional/métodos , Biotecnología/métodos , Cambio Climático , Productos Agrícolas/microbiología , Productos Agrícolas/parasitología , Humanos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología
19.
Mol Plant Microbe Interact ; 30(2): 150-160, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28051349

RESUMEN

In plants, cell surface pattern recognition receptors (PRRs) provide a first line of defense against pathogens. Although each PRR recognizes a specific ligand, they share common signaling outputs, such as callose and other cell wall-based defenses. Several PRRs are also important for callose induction in response to the defense signal salicylic acid (SA). The extent to which common components are needed for PRR signaling outputs is not known. The gain-of-function Arabidopsis mutant of ACCELERATED CELL DEATH6 (ACD6) acd6-1 shows constitutive callose production that partially depends on PRRs. ACD6-1 (and ACD6) forms complexes with the PRR FLAGELLIN SENSING2, and ACD6 is needed for responses to several PRR ligands. Thus, ACD6-1 could serve as a probe to identify additional proteins important for PRR-mediated signaling. Candidate signaling proteins (CSPs), identified in our proteomic screen after immunoprecipitation of hemagglutinin (HA)-tagged ACD6-1, include several subfamilies of receptor-like kinase (RLK) proteins and a MECHANO-SENSITIVE CHANNEL OF SMALL CONDUCTANCE-LIKE 4 (MSL4). In acd6-1, CSPs contribute to autoimmunity. In wild type, CSPs are needed for defense against bacteria and callose responses to two or more microbial-derived patterns and an SA agonist. CSPs may function to either i) promote the assembly of signaling complexes, ii) regulate the output of known PRRs, or both.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/inmunología , Autoinmunidad , Membrana Celular/metabolismo , Mecanotransducción Celular , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Fenotipo , Pseudomonas syringae/crecimiento & desarrollo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ácido Salicílico/metabolismo , Regulación hacia Arriba/genética
20.
PLoS One ; 11(4): e0153621, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27119338

RESUMEN

Effective methods for delivering bioprobes into the cells of intact plants are essential for investigating diverse biological processes. Increasing research on trees, such as Populus spp., for bioenergy applications is driving the need for techniques that work well with tree species. This report introduces vertically aligned carbon nanofiber (VACNF) arrays as a new tool for microdelivery of labeled molecules to Populus leaf tissue and whole plants. We demonstrated that VACNFs penetrate the leaf surface to deliver sub-microliter quantities of solution containing fluorescent or radiolabeled molecules into Populus leaf cells. Importantly, VACNFs proved to be gentler than abrasion with carborundum, a common way to introduce material into leaves. Unlike carborundum, VACNFs did not disrupt cell or tissue integrity, nor did they induce production of hydrogen peroxide, a typical wound response. We show that femtomole to picomole quantities of labeled molecules (fluorescent dyes, small proteins and dextran), ranging from 0.5-500 kDa, can be introduced by VACNFs, and we demonstrate the use of the approach to track delivered probes from their site of introduction on the leaf to distal plant regions. VACNF arrays thus offer an attractive microdelivery method for the introduction of biomolecules and other probes into trees and potentially other types of plants.


Asunto(s)
Carbono/química , Nanofibras/química , Hojas de la Planta/metabolismo , Árboles/metabolismo , Técnicas Biosensibles/métodos , Populus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...