Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fish Biol ; 100(4): 909-917, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35195904

RESUMEN

The present experiment tested if temperature during embryogenesis and parental heritage affected the migratory behaviour of young brown trout Salmo trutta. Two parental forms were used, a freshwater resident form and an anadromous form, both from the same river system but geographically isolated since 1993-95. Four groups of young S. trutta were produced and reared from (a) freshwater resident parents spawning in a tributary to the River Imsa, Norway, (b) anadromous parents spawning in the main stem of the same river system, (c) resident male × anadromous female parents and (d) resident female × anadromous male parents. The eggs were incubated until first exogenous feeding in River Imsa water, either unheated or heated c. 2.7°C above ambient temperature. Thereafter, all fish experienced the same ambient river temperature until release. Groups were released below an impassable waterfall 900 m upstream of the mouth of the River Imsa, either as age-0 in October 2019 or as age-1 in May 2020. About 7.5% of the released fish moved downstream and were captured in a trap at the outlet. For any given body size, the proportion of warm incubated trout that moved downstream was greater than the proportion of cold incubated trout. It was also found that most emigrants of the October-released S. trutta were caught within a month of release. Also, most May-released S. trutta emigrated in October. The offspring of the freshwater resident parents emigrated to a larger extent than offspring of anadromous parents. Thus, the difference in emigration with regard to embryonic temperature was phenotypically plastic and may be associated with an epigenetic effect of the thermal conditions during early development. The effect of parental origin suggests there may be genetic divergence between the geographically isolated populations.


Asunto(s)
Emigración e Inmigración , Trucha , Animales , Femenino , Agua Dulce , Masculino , Ríos , Temperatura , Trucha/genética
2.
Microbiol Spectr ; 9(3): e0149721, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34937192

RESUMEN

Tumors and infectious agents both benefit from an immunosuppressive environment. Cutibacterium acnes (C. acnes) is a bacterium in the normal skin microbiota, which has the ability to survive intracellularly in macrophages and is significantly more common in prostate cancer tissue compared with normal prostate tissue. This study investigated if prostate cancer tissue culture positive for C. acnes has a higher infiltration of regulatory T-cells (Tregs) and if macrophages stimulated with C. acnes induced the expression of immunosuppressive genes that could be linked to an increase of Tregs in prostate cancer. Real-time PCR and enzyme-linked immunosorbent spot assay (ELISA) were used to examine the expression of immunosuppressive genes in human macrophages stimulated in vitro with C. acnes, and associations between the presence of C. acnes and infiltration of Tregs were investigated by statistically analyzing data generated in two previous studies. The in vitro results demonstrated that macrophages stimulated with C. acnes significantly increased their expression of PD-L1, CCL17, and CCL18 mRNA and protein (p <0.05). In the cohort, Tregs in tumor stroma and tumor epithelia were positively associated with the presence of C. acnes (P = 0.0004 and P = 0.046, respectively). Since the macrophages stimulated with C. acnes in vitro increased the expression of immunosuppressive genes, and prostate cancer patients with prostatic C. acnes infection had higher infiltration of Tregs than their noninfected counterparts, we suggest that C. acnes may contribute to an immunosuppressive tumor environment that is vital for prostate cancer progression. IMPORTANCE In an immune suppressive tumor microenvironment constituted by immunosuppressive cells and immunosuppressive mediators, tumors may improve their ability to give rise to a clinically relevant cancer. In the present study, we found that C. acnes might contribute to an immunosuppressive environment by recruiting Tregs and by increasing the expression of immunosuppressive mediators such as PD-L1, CCL17, and CCL18. We believe that our data add support to the hypothesis of a contributing role of C. acnes in prostate cancer development. If established that C. acnes stimulates prostate cancer progression it may open up avenues for targeted prostate cancer treatment.


Asunto(s)
Tolerancia Inmunológica/inmunología , Macrófagos/inmunología , Propionibacteriaceae/inmunología , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/microbiología , Linfocitos T Reguladores/inmunología , Antígeno B7-H1/biosíntesis , Antígeno B7-H1/genética , Quimiocina CCL17/biosíntesis , Quimiocina CCL17/genética , Quimiocinas CC/biosíntesis , Quimiocinas CC/genética , Ensayo de Immunospot Ligado a Enzimas , Humanos , Tolerancia Inmunológica/genética , Masculino , Microbiota/inmunología , Neoplasias de la Próstata/patología , Escape del Tumor/inmunología , Microambiente Tumoral/inmunología
3.
Front Zool ; 17: 25, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32874189

RESUMEN

BACKGROUND: Temperature affects many aspects of performance in poikilotherms, including how prey respond when encountering predators. Studies of anti-predator responses in fish mainly have focused on behaviour, whereas physiological responses regulated through the hypothalamic-pituitary-interrenal axis have received little attention. We examined plasma cortisol and mRNA levels of stress-related genes in juvenile brown trout (Salmo trutta) at 3 and 8 °C in the presence and absence of a piscivorous fish (burbot, Lota lota). RESULTS: A redundancy analysis revealed that both water temperature and the presence of the predator explained a significant amount of the observed variation in cortisol and mRNA levels (11.4 and 2.8%, respectively). Trout had higher cortisol levels in the presence than in the absence of the predator. Analyses of individual gene expressions revealed that trout had significantly higher mRNA levels for 11 of the 16 examined genes at 3 than at 8 °C, and for one gene (retinol-binding protein 1), mRNA levels were higher in the presence than in the absence of the predator. Moreover, we found interaction effects between temperature and predator presence for two genes that code for serotonin and glucocorticoid receptors. CONCLUSIONS: Our results suggest that piscivorous fish elicit primary stress responses in juvenile salmonids and that some of these responses may be temperature dependent. In addition, this study emphasizes the strong temperature dependence of primary stress responses in poikilotherms, with possible implications for a warming climate.

4.
Oecologia ; 181(1): 299-311, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26787075

RESUMEN

Protection provided by shelter is important for survival and affects the time and energy budgets of animals. It has been suggested that in fresh waters at high latitudes and altitudes, surface ice during winter functions as overhead cover for fish, reducing the predation risk from terrestrial piscivores. We simulated ice cover by suspending plastic sheeting over five 30-m-long stream sections in a boreal forest stream and examined its effects on the growth and habitat use of brown trout (Salmo trutta) during winter. Trout that spent the winter under the artificial ice cover grew more than those in the control (uncovered) sections. Moreover, tracking of trout tagged with passive integrated transponders showed that in the absence of the artificial ice cover, habitat use during the day was restricted to the stream edges, often under undercut banks, whereas under the simulated ice cover condition, trout used the entire width of the stream. These results indicate that the presence of surface ice cover may improve the energetic status and broaden habitat use of stream fish during winter. It is therefore likely that reductions in the duration and extent of ice cover due to climate change will alter time and energy budgets, with potentially negative effects on fish production.


Asunto(s)
Distribución Animal , Composición Corporal , Cubierta de Hielo , Trucha/fisiología , Animales , Ríos , Estaciones del Año , Suecia , Trucha/crecimiento & desarrollo
5.
PLoS One ; 9(11): e113675, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25412343

RESUMEN

Periphyton communities of a boreal stream were exposed to different light and nutrient levels to estimate energy transfer efficiency from primary to secondary producers using labeling with inorganic (13)C. In a one-day field experiment, periphyton grown in fast-flow conditions and dominated by opportunistic green algae were exposed to light levels corresponding to sub-saturating (forest shade) and saturating (open stream section) irradiances, and to N and P nutrient additions. In a two-week laboratory experiment, periphyton grown in low-flow conditions and dominated by slowly growing diatoms were incubated under two sub-saturating light and nutrient enrichment levels as well as grazed and non-grazed conditions. Light had significant positive effect on (13)C uptake by periphyton. In the field experiment, P addition had a positive effect on (13)C uptake but only at sub-saturating light levels, whereas in the laboratory experiment nutrient additions had no effect on the periphyton biomass, (13)C uptake, biovolume and community composition. In the laboratory experiment, the grazer (caddisfly) effect on periphyton biomass specific (13)C uptake and nutrient content was much stronger than the effects of light and nutrients. In particular, grazers significantly reduced periphyton biomass and increased biomass specific (13)C uptake and C:nutrient ratios. The energy transfer efficiency, estimated as a ratio between (13)C uptake by caddisfly and periphyton, was positively affected by light conditions, whereas the nutrient effect was not significant. We suggest that the observed effects on energy transfer were related to the increased diet contribution of highly palatable green algae, stimulated by higher light levels. Also, high heterotrophic microbial activity under low light levels would facilitate energy loss through respiration and decrease overall trophic transfer efficiency. These findings suggest that even a small increase in light intensity could result in community-wide effects on periphyton in boreal streams, with a subsequent increase in energy transfer and system productivity.


Asunto(s)
Chlorophyta/metabolismo , Cianobacterias/metabolismo , Diatomeas/metabolismo , Transferencia de Energía , Luz , Biomasa , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Clorofila/metabolismo , Clorofila A , Chlorophyta/crecimiento & desarrollo , Cianobacterias/crecimiento & desarrollo , Diatomeas/crecimiento & desarrollo , Ecosistema , Cadena Alimentaria , Nitrógeno/química , Nitrógeno/metabolismo , Fósforo/química , Fósforo/metabolismo , Ríos
6.
PLoS One ; 7(5): e36462, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22574164

RESUMEN

Subsidies of energy and material from the riparian zone have large impacts on recipient stream habitats. Human-induced changes, such as deforestation, may profoundly affect these pathways. However, the strength of individual factors on stream ecosystems is poorly understood since the factors involved often interact in complex ways. We isolated two of these factors, manipulating the flux of terrestrial input and the intensity of light in a 2×2 factorial design, where we followed the growth and diet of two size-classes of brown trout (Salmo trutta) and the development of periphyton, grazer macroinvertebrates, terrestrial invertebrate inputs, and drift in twelve 20 m long enclosed stream reaches in a five-month-long experiment in a boreal coniferous forest stream. We found that light intensity, which was artificially increased 2.5 times above ambient levels, had an effect on grazer density, but no detectable effect on chlorophyll a biomass. We also found a seasonal effect on the amount of drift and that the reduction of terrestrial prey input, accomplished by covering enclosures with transparent plastic, had a negative impact on the amount of terrestrial invertebrates in the drift. Further, trout growth was strongly seasonal and followed the same pattern as drift biomass, and the reduction of terrestrial prey input had a negative effect on trout growth. Diet analysis was consistent with growth differences, showing that trout in open enclosures consumed relatively more terrestrial prey in summer than trout living in covered enclosures. We also predicted ontogenetic differences in the diet and growth of old and young trout, where we expected old fish to be more affected by the terrestrial prey reduction, but we found little evidence of ontogenetic differences. Overall, our results showed that reduced terrestrial prey inputs, as would be expected from forest harvesting, shaped differences in the growth and diet of the top predator, brown trout.


Asunto(s)
Dieta , Invertebrados , Luz , Ríos , Salmonidae/crecimiento & desarrollo , Árboles , Animales , Clorofila/metabolismo , Clorofila A , Herbivoria/efectos de la radiación
8.
Ecol Lett ; 9(6): 645-51, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16706909

RESUMEN

The decision to migrate or not is regarded as genetically controlled for many invertebrate and vertebrate taxa. Here, we show that the environment influences this decision. By reciprocally transplanting brown trout (Salmo trutta L.) between two sections in a river, we show that both migratory and non-migratory behaviour can be environmentally induced; migratory behaviour developed in a river section with high brown trout densities and low specific growth rates, whereas non-migratory behaviour developed in a section with low brown trout densities and high specific growth rates. In a laboratory experiment, we tested the effect of food availability on the development of migratory and non-migratory body morphologies and found that most brown trout became migrants when food levels were low but fewer did so at high food levels. Thus, the decision to migrate seems to be a plastic response, influenced by growth opportunities.


Asunto(s)
Alimentos , Salmonidae , Animales , Biometría , Ambiente , Cadena Alimentaria , Fenotipo , Densidad de Población , Dinámica Poblacional , Salmonidae/anatomía & histología , Salmonidae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...