Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Neurosci ; 27(3): 421-432, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38388736

RESUMEN

Vascular disruption has been implicated in coronavirus disease 2019 (COVID-19) pathogenesis and may predispose to the neurological sequelae associated with long COVID, yet it is unclear how blood-brain barrier (BBB) function is affected in these conditions. Here we show that BBB disruption is evident during acute infection and in patients with long COVID with cognitive impairment, commonly referred to as brain fog. Using dynamic contrast-enhanced magnetic resonance imaging, we show BBB disruption in patients with long COVID-associated brain fog. Transcriptomic analysis of peripheral blood mononuclear cells revealed dysregulation of the coagulation system and a dampened adaptive immune response in individuals with brain fog. Accordingly, peripheral blood mononuclear cells showed increased adhesion to human brain endothelial cells in vitro, while exposure of brain endothelial cells to serum from patients with long COVID induced expression of inflammatory markers. Together, our data suggest that sustained systemic inflammation and persistent localized BBB dysfunction is a key feature of long COVID-associated brain fog.


Asunto(s)
COVID-19 , Disfunción Cognitiva , Humanos , Barrera Hematoencefálica/metabolismo , Síndrome Post Agudo de COVID-19 , Células Endoteliales/metabolismo , Leucocitos Mononucleares , COVID-19/complicaciones , Disfunción Cognitiva/patología , Inflamación/patología , Fatiga Mental/metabolismo , Fatiga Mental/patología
3.
J Chem Phys ; 159(22)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38084808

RESUMEN

This article presents a method of computing bound state potential curves and autoionizing curves using fixed-nuclei R-matrix data extracted from the Quantemol-N software suite. It is a method based on two related multichannel quantum-defect theory approaches. One is applying bound-state boundary conditions to closed-channel asymptotic solution matrices, and the other is searching for resonance positions via eigenphase shift analysis. We apply the method to the CH molecule to produce dense potential-curve datasets presented as graphs and supplied as tables in the publication supplement.

4.
Fluids Barriers CNS ; 20(1): 22, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978081

RESUMEN

The CLDN5 gene encodes claudin-5 (CLDN-5) that is expressed in endothelial cells and forms tight junctions which limit the passive diffusions of ions and solutes. The blood-brain barrier (BBB), composed of brain microvascular endothelial cells and associated pericytes and end-feet of astrocytes, is a physical and biological barrier to maintain the brain microenvironment. The expression of CLDN-5 is tightly regulated in the BBB by other junctional proteins in endothelial cells and by supports from pericytes and astrocytes. The most recent literature clearly shows a compromised BBB with a decline in CLDN-5 expression increasing the risks of developing neuropsychiatric disorders, epilepsy, brain calcification and dementia. The purpose of this review is to summarize the known diseases associated with CLDN-5 expression and function. In the first part of this review, we highlight the recent understanding of how other junctional proteins as well as pericytes and astrocytes maintain CLDN-5 expression in brain endothelial cells. We detail some drugs that can enhance these supports and are being developed or currently in use to treat diseases associated with CLDN-5 decline. We then summarise mutagenesis-based studies which have facilitated a better understanding of the physiological role of the CLDN-5 protein at the BBB and have demonstrated the functional consequences of a recently identified pathogenic CLDN-5 missense mutation from patients with alternating hemiplegia of childhood. This mutation is the first gain-of-function mutation identified in the CLDN gene family with all others representing loss-of-function mutations resulting in mis-localization of CLDN protein and/or attenuated barrier function. Finally, we summarize recent reports about the dosage-dependent effect of CLDN-5 expression on the development of neurological diseases in mice and discuss what cellular supports for CLDN-5 regulation are compromised in the BBB in human diseases.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Humanos , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Astrocitos/metabolismo , Transporte Biológico , Claudina-5/genética , Claudina-5/metabolismo , Uniones Estrechas/metabolismo
5.
J Phys Chem A ; 127(1): 18-28, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36584308

RESUMEN

Ultracold collisions of neutral atoms and molecules have been of great interest since experimental advances enabled the cooling and trapping of such species. This study develops a simplified theoretical treatment of a low-energy collision between an alkali atom and a diatomic molecule accompanied by absorption of a photon from an external electromagnetic field. The long-range interaction between the two species is treated, including the atomic spin-orbit interaction. The long-range potential energy curves for the triatomic complex are calculated in realistic detail, while effects of the short-range behavior are mimicked by applying different boundary conditions at the van der Waals length. For neutral colliding species, the leading interaction term is the dipole-dipole interaction. In the case of nonpolar dimers like Cs2, the second leading term is the quadrupole-quadrupole interaction. However, there is also a strong dipole-quadrupole interaction for dimers with a large permanent dipole moment such as NaCs, making the dipole-quadrupole interaction the second leading term for an atom colliding with a polar dimer. Our applications of the simplified treatment show a higher density of trimer states for a polar dimer compared to the case of a nonpolar dimer like Cs2. This is a consequence of the strong quadrupole-dipole coupling between the atom and the dimer dipole moment.

6.
Phys Rev Lett ; 129(18): 183204, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36374686

RESUMEN

We report the measurement of the photoelectron angular distribution of two-photon single-ionization near the 2p^{2} ^{1}D^{e} double-excitation resonance in helium, benchmarking the fundamental nonlinear interaction of two photons with two correlated electrons. This observation is enabled by the unique combination of intense extreme ultraviolet pulses, delivered at the high-repetition-rate free-electron laser in Hamburg (FLASH), ionizing a jet of cryogenically cooled helium atoms in a reaction microscope. The spectral structure of the intense self-amplified spontaneous emission free-electron laser pulses has been resolved on a single-shot level to allow for post selection of pulses, leading to an enhanced spectral resolution, and introducing a new experimental method. The measured angular distribution is directly compared to state-of-the-art theory based on multichannel quantum defect theory and the streamlined R-matrix method. These results and experimental methodology open a promising route for exploring fundamental interactions of few photons with few electrons in general.

7.
Methods Mol Biol ; 2492: 307-314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733053

RESUMEN

Tight junction proteins are integral membrane proteins located apically on epithelial and endothelial cells. They form a selective paracellular barrier restricting the passage of solutes and ions across epithelial and endothelial sheets. In brain endothelial cells, the enrichment of tight junction proteins is one of the unique features of the blood-brain barrier, the physiological boundary that separates the blood from the parenchyma. The predominant tight junction family proteins are the claudins, but several others have been described in recent years including the marvel family, occludin, and lipolysis-stimulated lipoprotein receptor. Together, the tight junctions create a highly electrical-resistant, impermeable paracellular channel that strictly restricts the movement of material from the blood to the parenchyma and vice versa. In this chapter, we will discuss immunohistochemical methods to assess tight junction expression and localization and an ImageJ-based method for quantifying tight junction staining in healthy and diseased states.


Asunto(s)
Células Endoteliales , Proteínas de Uniones Estrechas , Claudinas/metabolismo , Células Endoteliales/metabolismo , Ocludina/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo
8.
Front Neurosci ; 16: 852114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431772

RESUMEN

SARM1 (sterile alpha and armadillo motif-containing protein) is a highly conserved Toll/IL-1 Receptor (TIR) adaptor with important roles in mediating immune responses. Studies in the brain have shown that SARM1 plays a role in induction of neuronal axon degeneration in response to a variety of injuries. We recently demonstrated that SARM1 is pro-degenerative in a genetic model of inherited retinopathy. This current study aimed to characterise the effect of SARM1 deletion in an alternative model of retinal degeneration (RD) in which the retinal pigment epithelium (RPE) fragments following administration of oxidising agent, sodium iodate (NaIO3), leading to subsequent photoreceptor cell death. Following administration of NaIO3, we observed no apparent difference in rate of loss of RPE integrity in SARM1 deficient mice compared to WT counterparts. However, despite no differences in RPE degeneration, photoreceptor cell number and retinal thickness were increased in Sarm1-/- mice compared to WT counterparts. This apparent protection of the photoreceptors in SARM1 deficient mice is supported by an observed decrease in pro-apoptotic caspase-3 in the photoreceptor layer of Sarm1-/- mice compared to WT. Together these data indicate a pro-degenerative role for SARM1 in the photoreceptors, but not in the RPE, in an oxidative stress induced model of retinal degeneration consistent with its known degenerative role in neurons in a range of neurodegenerative settings.

9.
Nat Commun ; 13(1): 2003, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35422069

RESUMEN

Blood-brain barrier (BBB) dysfunction is associated with worse epilepsy outcomes however the underlying molecular mechanisms of BBB dysfunction remain to be elucidated. Tight junction proteins are important regulators of BBB integrity and in particular, the tight junction protein claudin-5 is the most enriched in brain endothelial cells and regulates size-selectivity at the BBB. Additionally, disruption of claudin-5 expression has been implicated in numerous disorders including schizophrenia, depression and traumatic brain injury, yet its role in epilepsy has not been fully deciphered. Here we report that claudin-5 protein levels are significantly diminished in surgically resected brain tissue from patients with treatment-resistant epilepsy. Concomitantly, dynamic contrast-enhanced MRI in these patients showed widespread BBB disruption. We show that targeted disruption of claudin-5 in the hippocampus or genetic heterozygosity of claudin-5 in mice exacerbates kainic acid-induced seizures and BBB disruption. Additionally, inducible knockdown of claudin-5 in mice leads to spontaneous recurrent seizures, severe neuroinflammation, and mortality. Finally, we identify that RepSox, a regulator of claudin-5 expression, can prevent seizure activity in experimental epilepsy. Altogether, we propose that BBB stabilizing drugs could represent a new generation of agents to prevent seizure activity in epilepsy patients.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Animales , Barrera Hematoencefálica/metabolismo , Claudina-5/genética , Claudina-5/metabolismo , Células Endoteliales/metabolismo , Humanos , Ratones , Convulsiones/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo
10.
Cell Rep Med ; 3(1): 100497, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35106509

RESUMEN

The blood-brain barrier (BBB) restricts clinically relevant accumulation of many therapeutics in the CNS. Low-dose methamphetamine (METH) induces fluid-phase transcytosis across BBB endothelial cells in vitro and could be used to enhance CNS drug delivery. Here, we show that low-dose METH induces significant BBB leakage in rodents ex vivo and in vivo. Notably, METH leaves tight junctions intact and induces transient leakage via caveolar transport, which is suppressed at 4°C and in caveolin-1 (CAV1) knockout mice. METH enhances brain penetration of both small therapeutic molecules, such as doxorubicin (DOX), and large proteins. Lastly, METH improves the therapeutic efficacy of DOX in a mouse model of glioblastoma, as measured by a 25% increase in median survival time and a significant reduction in satellite lesions. Collectively, our data indicate that caveolar transport at the adult BBB is agonist inducible and that METH can enhance drug delivery to the CNS.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Caveolas/metabolismo , Metanfetamina/farmacología , Preparaciones Farmacéuticas/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/ultraestructura , Caveolas/efectos de los fármacos , Caveolas/ultraestructura , Doxorrubicina/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Femenino , Glioma/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas Wistar
11.
Nano Lett ; 21(22): 9805-9815, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34516144

RESUMEN

The blood-brain barrier (BBB) is highly selective and acts as the interface between the central nervous system and circulation. While the BBB is critical for maintaining brain homeostasis, it represents a formidable challenge for drug delivery. Here we synthesized gold nanoparticles (AuNPs) for targeting the tight junction specifically and demonstrated that transcranial picosecond laser stimulation of these AuNPs post intravenous injection increases the BBB permeability. The BBB permeability change can be graded by laser intensity, is entirely reversible, and involves increased paracellular diffusion. BBB modulation does not lead to significant disruption in the spontaneous vasomotion or the structure of the neurovascular unit. This strategy allows the entry of immunoglobulins and viral gene therapy vectors, as well as cargo-laden liposomes. We anticipate this nanotechnology to be useful for tissue regions that are accessible to light or fiberoptic application and to open new avenues for drug screening and therapeutic interventions in the central nervous system.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Transporte Biológico , Barrera Hematoencefálica , Oro/química , Rayos Láser
12.
Phys Rev E ; 103(6-1): 062211, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34271623

RESUMEN

Resonances in particle transmission through a 1D finite lattice are studied in the presence of a finite number of impurities. Although this is a one-dimensional system that is classically integrable and has no chaos, studying the statistical properties of the spectrum such as the level spacing distribution and the spectral rigidity shows the same statistics as the one obtained for chaotic systems. Using a dimensionless parameter that reflects the degree of state localization, we demonstrate how the transition from Poisson-level statistics to the Wigner-Dyson is affected by state localization. The resonance positions are calculated using both the Wigner-Smith time delay and a Siegert state method, which are in good agreement. Our results show the dependence of the level statistics on the localization length as it evolves from a Poisson distribution to Wigner-Dyson.

13.
Mol Ther ; 29(6): 2041-2052, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33609732

RESUMEN

Oligonucleotide therapies offer precision treatments for a variety of neurological diseases, including epilepsy, but their deployment is hampered by the blood-brain barrier (BBB). Previous studies showed that intracerebroventricular injection of an antisense oligonucleotide (antagomir) targeting microRNA-134 (Ant-134) reduced evoked and spontaneous seizures in animal models of epilepsy. In this study, we used assays of serum protein and tracer extravasation to determine that BBB disruption occurring after status epilepticus in mice was sufficient to permit passage of systemically injected Ant-134 into the brain parenchyma. Intraperitoneal and intravenous injection of Ant-134 reached the hippocampus and blocked seizure-induced upregulation of miR-134. A single intraperitoneal injection of Ant-134 at 2 h after status epilepticus in mice resulted in potent suppression of spontaneous recurrent seizures, reaching a 99.5% reduction during recordings at 3 months. The duration of spontaneous seizures, when they occurred, was also reduced in Ant-134-treated mice. In vivo knockdown of LIM kinase-1 (Limk-1) increased seizure frequency in Ant-134-treated mice, implicating de-repression of Limk-1 in the antagomir mechanism. These studies indicate that systemic delivery of Ant-134 reaches the brain and produces long-lasting seizure-suppressive effects after systemic injection in mice when timed with BBB disruption and may be a clinically viable approach for this and other disease-modifying microRNA therapies.


Asunto(s)
Antagomirs/genética , Barrera Hematoencefálica/metabolismo , Epilepsia/genética , Epilepsia/terapia , Animales , Antagomirs/administración & dosificación , Barrera Hematoencefálica/patología , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Silenciador del Gen , Técnicas de Transferencia de Gen , Predisposición Genética a la Enfermedad , Terapia Genética , Ratones , MicroARNs/genética , Interferencia de ARN , Resultado del Tratamiento
14.
EMBO Mol Med ; 13(2): e12889, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33350588

RESUMEN

Cerebrovascular pathologies occur in up to 80% of cases of Alzheimer's disease; however, the underlying mechanisms that lead to perivascular pathology and accompanying blood-brain barrier (BBB) disruption are still not fully understood. We have identified previously unreported mutations in colony stimulating factor-1 receptor (CSF-1R) in an ultra-rare autosomal dominant condition termed adult-onset leucoencephalopathy with axonal spheroids and pigmented glia (ALSP). Cerebrovascular pathologies such as cerebral amyloid angiopathy (CAA) and perivascular p-Tau were some of the primary neuropathological features of this condition. We have identified two families with different dominant acting alleles with variants located in the kinase region of the CSF-1R gene, which confer a lack of kinase activity and signalling. The protein product of this gene acts as the receptor for 2 cognate ligands, namely colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). Here, we show that depletion in CSF-1R signalling induces BBB disruption and decreases the phagocytic capacity of peripheral macrophages but not microglia. CSF-1R signalling appears to be critical for macrophage and microglial activation, and macrophage localisation to amyloid appears reduced following the induction of Csf-1r heterozygosity in macrophages. Finally, we show that endothelial/microglial crosstalk and concomitant attenuation of CSF-1R signalling causes re-modelling of BBB-associated tight junctions and suggest that regulating BBB integrity and systemic macrophage recruitment to the brain may be therapeutically relevant in ALSP and other Alzheimer's-like dementias.


Asunto(s)
Leucoencefalopatías , Transducción de Señal , Adulto , Encéfalo , Humanos , Microglía , Neuroglía , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos
15.
Transl Psychiatry ; 10(1): 373, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139732

RESUMEN

Major psychiatric disorders affect 25% of the population. While genetic and environmental risk factors have been identified, the underlying pathophysiology of conditions, such as schizophrenia, bipolar disorder and major depression remains largely unknown. Here, we show that endothelial associated tight junction components are differentially regulated at the blood-brain barrier (BBB) in distinct neuroanatomic regions of human donor brain tissues. Previous studies have shown associations between BBB disruption and the development of psychiatric behaviours in rodents. Using immunohistochemistry and qRT-PCR, we show that the expression of claudin-5 is reduced in the hippocampus of individuals diagnosed with major depression or schizophrenia. We also show that levels of tight junction mRNA transcripts, including claudin-5, claudin-12 and ZO-1 correlate with disease duration and age of onset of a range of psychiatric disorders. Together, these data show that BBB associated tight junction disruption and dysregulation is a common pathology observed across the major psychiatric disorders. Targeting and regulating tight junction protein integrity at the BBB could, therefore, represent a novel therapeutic strategy for these conditions.


Asunto(s)
Barrera Hematoencefálica , Trastornos Mentales , Uniones Estrechas , Barrera Hematoencefálica/metabolismo , Claudina-5/metabolismo , Femenino , Humanos , Masculino , Trastornos Mentales/metabolismo , Uniones Estrechas/metabolismo
16.
Phys Rev Lett ; 125(5): 052501, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32794850

RESUMEN

The low energy systems of three or four neutrons are treated within the adiabatic hyperspherical framework, yielding an understanding of the low energy quantum states in terms of an adiabatic potential energy curve. The dominant low energy potential curve for each system, computed here using widely accepted nucleon-nucleon interactions with and without the inclusion of a three-nucleon force, shows no sign of a low energy resonance. However, both systems exhibit a low energy enhancement of the density of states, or of the Wigner-Smith time delay, which derives from long-range universal physics analogous to the Efimov effect. That enhancement could be relevant to understanding the low energy excess of correlated four-neutron ejection events observed experimentally in a nuclear reaction by Kisamori et al. [Phys. Rev. Lett. 116, 052501 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.052501].

17.
Cell Rep ; 30(7): 2209-2224.e5, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32075760

RESUMEN

Retinal degeneration is a form of neurodegenerative disease and is the leading cause of vision loss globally. The Toll-like receptors (TLRs) are primary components of the innate immune system involved in signal transduction. Here we show that TLR2 induces complement factors C3 and CFB, the common and rate-limiting factors of the alternative pathway in both retinal pigment epithelial (RPE) cells and mononuclear phagocytes. Neutralization of TLR2 reduces opsonizing fragments of C3 in the outer retina and protects photoreceptor neurons from oxidative stress-induced degeneration. TLR2 deficiency also preserves tight junction expression and promotes RPE resistance to fragmentation. Finally, oxidative stress-induced formation of the terminal complement membrane attack complex and Iba1+ cell infiltration are strikingly inhibited in the TLR2-deficient retina. Our data directly implicate TLR2 as a mediator of retinal degeneration in response to oxidative stress and present TLR2 as a bridge between oxidative damage and complement-mediated retinal pathology.


Asunto(s)
Estrés Oxidativo/fisiología , Degeneración Retiniana/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/genética
18.
Phys Rev Lett ; 124(4): 043401, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32058740

RESUMEN

The HeH^{+} cation is the simplest molecular prototype of the indirect dissociative recombination (DR) process that proceeds through electron capture into Rydberg states of the corresponding neutral molecule. This Letter develops the first application of our recently developed energy-dependent frame transformation theory to the indirect DR processes. The theoretical model is based on the multichannel quantum-defect theory with the vibrational basis states computed using exterior complex scaling of the nuclear Hamiltonian. The ab initio electronic R-matrix theory is adopted to compute quantum defects as functions of the collision energy and of the internuclear distance. The resulting DR rates are convolved over the beam energy distributions relevant to a recent experiment at the Cryogenic Storage Ring, giving good agreement between the experiment and the theory.

19.
J Am Coll Emerg Physicians Open ; 1(6): 1630-1636, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33392572

RESUMEN

During the COVID-19 pandemic, one of the major changes that has occurred in emergency medicine is the evolution of telemedicine. With relaxation of regulatory and administrative barriers, the use of this already available technology has rapidly expanded. Telemedicine provides opportunity to markedly decrease personal protective equipment (PPE) and reduce healthcare worker exposures. Moreover, with the convenience and availability of access to medical care via telemedicine, a more fundamental change in healthcare delivery in the United States is likely. The implementation of telemedicine in the emergency department (ED) in particular has great potential to prevent the iatrogenic spread of COVID-19 and protect health care workers. Challenges to widespread adoption of telemedicine include privacy concerns, limitation of physical examination, and concerns of patient experience. In this clinical review, we discuss ED telemedicine applications, logistics, and challenges in the COVID-19 era as well as recent regulatory and legal changes. In addition, examples of telemedicine use are described from 2 institutions. Examples of future applications of telemedicine within the realm of emergency medicine are also discussed.

20.
Neurosci Lett ; 726: 133664, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29966749

RESUMEN

The blood-brain barrier (BBB) is a dynamic interface between the peripheral blood supply and the cerebral parenchyma, controlling the transport of material to and from the brain. Tight junctions between the endothelial cells of the cerebral microvasculature limit the passage of large, negatively charged molecules via paracellular diffusion whereas transcellular transportation across the endothelial cell is controlled by a number of mechanisms including transporter proteins, endocytosis, and diffusion. Here, we review the evidence that perturbation of these processes may underlie the development of psychiatric disorders including schizophrenia, autism spectrum disorder (ASD), and affective disorders. Increased permeability of the BBB appears to be a common factor in these disorders, leading to increased infiltration of peripheral material into the brain culminating in neuroinflammation and oxidative stress. However, although there is no common mechanism underpinning BBB dysfunction even within each particular disorder, the tight junction protein claudin-5 may be a clinically relevant target given that both clinical and pre-clinical research has linked it to schizophrenia, ASD, and depression. Additionally, we discuss the clinical significance of the BBB in diagnosis (genetic markers, dynamic contrast-enhanced-magnetic resonance imaging, and blood biomarkers) and in treatment (drug delivery).


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Mediadores de Inflamación/metabolismo , Trastornos Mentales/metabolismo , Animales , Transporte Biológico/fisiología , Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Humanos , Trastornos Mentales/diagnóstico por imagen , Trastornos Mentales/psicología , Neuroimagen/métodos , Neuroimagen/tendencias , Permeabilidad , Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...