Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 3(5): 160161, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27293798

RESUMEN

Owing to Rhenium (Re) having no known biological role, it is not fully understood how Re is concentrated in oil kerogens. A commonly held assumption is that Re is incorporated into decomposing biomass under reducing conditions. However, living macroalgae also concentrate Re to several orders of magnitude greater than that of seawater. This study uses Fucus vesiculosus to assess Re uptake and its subsequent localization in the biomass. It is demonstrated that the Re abundance varies within the macroalgae and that Re is not located in one specific structure. In F. vesiculosus, the uptake and tolerance of Re was evaluated via tip cultures grown in seawater of different Re(VII) compound concentrations (0-7450 ng g(-1)). A positive correlation is shown between the concentration of Re-doped seawater and the abundance of Re accumulated in the tips. However, significant differences between Re(VII) compounds are observed. Although the specific cell structures where the Re is localized is not known, our findings suggest that Re is not held within chloroplasts or cytoplasmic proteins. In addition, metabolically inactivated F. vesiculosus does not accumulate Re, which indicates that Re uptake is via syn-life bioadsorption/bioaccumulation and that macroalgae may provide a source for Re phytomining and/or bioremediation.

2.
Interface Focus ; 3(1): 20120037, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24427510

RESUMEN

Biofuels production from microalgae attracts much attention but remains an unproven technology. We explore routes to enhance production through modifications to a range of generic microalgal physiological characteristics. Our analysis shows that biofuels production may be enhanced ca fivefold through genetic modification (GM) of factors affecting growth rate, respiration, photoacclimation, photosynthesis efficiency and the minimum cell quotas for nitrogen and phosphorous (N : C and P : C). However, simulations indicate that the ideal GM microalgae for commercial deployment could, on escape to the environment, become a harmful algal bloom species par excellence, with attendant risks to ecosystems and livelihoods. In large measure, this is because an organism able to produce carbohydrate and/or lipid at high rates, providing stock metabolites for biofuels production, will also be able to attain a stoichiometric composition that will be far from optimal as food for the support of zooplankton growth. This composition could suppress or even halt the grazing activity that would otherwise control the microalgal growth in nature. In consequence, we recommend that the genetic manipulation of microalgae, with inherent consequences on a scale comparable to geoengineering, should be considered under strict international regulation.

3.
Interface Focus ; 3(1): 20120046, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24427515

RESUMEN

Thermochemical processing methods such as pyrolysis are of growing interest as a means of converting biomass into fuels and commodity chemicals in a sustainable manner. Macroalgae, or seaweed, represent a novel class of feedstock for pyrolysis that, owing to the nature of the environments in which they grow coupled with their biochemistry, naturally possess high metal contents. Although the impact of metals upon the pyrolysis of terrestrial biomass is well documented, their influence on the thermochemical conversion of marine-derived feeds is largely unknown. Furthermore, these effects are inherently difficult to study, owing to the heterogeneous character of natural seaweed samples. The work described in this paper uses copper(II) alginate, together with alginic acid and sodium alginate as model compounds for exploring the effects of metals upon macroalgae thermolysis. A thermogravimetric analysis-Fourier transform infrared spectroscopic study revealed that, unusually, Cu(2+) ions promote the onset of pyrolysis in the alginate polymer, with copper(II) alginate initiating rapid devolatilization at 143°C, 14°C lower than alginic acid and 61°C below the equivalent point for sodium alginate. Moreover, this effect was mirrored in a sample of wild Laminaria digitata that had been doped with Cu(2+) ions prior to pyrolysis, thus validating the use of alginates as model compounds with which to study the thermolysis of macroalgae. These observations indicate the varying impact of different metal species on thermochemical behaviour of seaweeds and offer an insight into the pyrolysis of brown macroalgae used in phytoremediation of metal-containing waste streams.

4.
J R Soc Interface ; 7(46): 703-26, 2010 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-20031983

RESUMEN

Microalgae provide various potential advantages for biofuel production when compared with 'traditional' crops. Specifically, large-scale microalgal culture need not compete for arable land, while in theory their productivity is greater. In consequence, there has been resurgence in interest and a proliferation of algae fuel projects. However, while on a theoretical basis, microalgae may produce between 10- and 100-fold more oil per acre, such capacities have not been validated on a commercial scale. We critically review current designs of algal culture facilities, including photobioreactors and open ponds, with regards to photosynthetic productivity and associated biomass and oil production and include an analysis of alternative approaches using models, balancing space needs, productivity and biomass concentrations, together with nutrient requirements. In the light of the current interest in synthetic genomics and genetic modifications, we also evaluate the options for potential metabolic engineering of the lipid biosynthesis pathways of microalgae. We conclude that although significant literature exists on microalgal growth and biochemistry, significantly more work needs to be undertaken to understand and potentially manipulate algal lipid metabolism. Furthermore, with regards to chemical upgrading of algal lipids and biomass, we describe alternative fuel synthesis routes, and discuss and evaluate the application of catalysts traditionally used for plant oils. Simulations that incorporate financial elements, along with fluid dynamics and algae growth models, are likely to be increasingly useful for predicting reactor design efficiency and life cycle analysis to determine the viability of the various options for large-scale culture. The greatest potential for cost reduction and increased yields most probably lies within closed or hybrid closed-open production systems.


Asunto(s)
Biocombustibles , Eucariontes/genética , Eucariontes/fisiología , Biomasa , Catálisis , Centrifugación , Simulación por Computador , Fuentes Generadoras de Energía , Ácidos Grasos/química , Filtración , Luz , Lípidos/química , Microscopía Confocal/métodos , Modelos Químicos , Fotosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA