Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Genes Dev ; 28(21): 2394-406, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25367035

RESUMEN

Recent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) have been invoked to explain these rearrangements. We examined BIR and template switching between highly diverged sequences in Saccharomyces cerevisiae, induced during repair of a site-specific double-strand break (DSB). Our data show that such template switches are robust mechanisms that give rise to complex rearrangements. Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. In particular, such jumps are less constrained by sequence divergence and exhibit a different pattern of microhomology junctions. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution.


Asunto(s)
Repeticiones de Microsatélite/genética , Recombinación Genética/genética , Saccharomyces cerevisiae/genética , Reparación del ADN/genética , Replicación del ADN/genética , Evolución Molecular , Conversión Génica , Inestabilidad Genómica/genética , Proteínas de Saccharomyces cerevisiae/genética , Moldes Genéticos , Translocación Genética/genética
2.
Proc Natl Acad Sci U S A ; 111(21): E2210-8, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24799712

RESUMEN

In mammalian cells, perturbations in DNA replication result in chromosome breaks in regions termed "fragile sites." Using DNA microarrays, we mapped recombination events and chromosome rearrangements induced by reduced levels of the replicative DNA polymerase-α in the yeast Saccharomyces cerevisiae. We found that the recombination events were nonrandomly associated with a number of structural/sequence motifs that correlate with paused DNA replication forks, including replication-termination sites (TER sites) and binding sites for the helicase Rrm3p. The pattern of gene-conversion events associated with cross-overs suggests that most of the DNA lesions that initiate recombination between homologs are double-stranded DNA breaks induced during S or G2 of the cell cycle, in contrast to spontaneous recombination events that are initiated by double-stranded DNA breaks formed prior to replication. Low levels of DNA polymerase-α also induced very high rates of aneuploidy, as well as chromosome deletions and duplications. Most of the deletions and duplications had Ty retrotransposons at their breakpoints.


Asunto(s)
Aberraciones Cromosómicas , Sitios Frágiles del Cromosoma/genética , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Mapeo Cromosómico/métodos , ADN Polimerasa Dirigida por ADN/metabolismo , Genómica/métodos , Pérdida de Heterocigocidad , Análisis por Micromatrices , Polimorfismo de Nucleótido Simple/genética
3.
Proc Natl Acad Sci U S A ; 110(49): 19866-71, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24191060

RESUMEN

Interstitial telomeric sequences (ITSs) are present in many eukaryotic genomes and are linked to genome instabilities and disease in humans. The mechanisms responsible for ITS-mediated genome instability are not understood in molecular detail. Here, we use a model Saccharomyces cerevisiae system to characterize genome instability mediated by yeast telomeric (Ytel) repeats embedded within an intron of a reporter gene inside a yeast chromosome. We observed a very high rate of small insertions and deletions within the repeats. We also found frequent gross chromosome rearrangements, including deletions, duplications, inversions, translocations, and formation of acentric minichromosomes. The inversions are a unique class of chromosome rearrangement involving an interaction between the ITS and the true telomere of the chromosome. Because we previously found that Ytel repeats cause strong replication fork stalling, we suggest that formation of double-stranded DNA breaks within the Ytel sequences might be responsible for these gross chromosome rearrangements.


Asunto(s)
Aberraciones Cromosómicas , Sitios Frágiles del Cromosoma/genética , Inestabilidad Genómica/genética , Saccharomyces cerevisiae/genética , Telómero/genética , Southern Blotting , Roturas del ADN de Doble Cadena , Genes Reporteros/genética , Análisis por Micromatrices , Reacción en Cadena de la Polimerasa
4.
Genetics ; 194(1): 69-80, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23410835

RESUMEN

Dicentric chromosomes undergo breakage in mitosis, resulting in chromosome deletions, duplications, and translocations. In this study, we map chromosome break sites of dicentrics in Saccharomyces cerevisiae by a mitotic recombination assay. The assay uses a diploid strain in which one homolog has a conditional centromere in addition to a wild-type centromere, and the other homolog has only the wild-type centromere; the conditional centromere is inactive when cells are grown in galactose and is activated when the cells are switched to glucose. In addition, the two homologs are distinguishable by multiple single-nucleotide polymorphisms (SNPs). Under conditions in which the conditional centromere is activated, the functionally dicentric chromosome undergoes double-stranded DNA breaks (DSBs) that can be repaired by mitotic recombination with the homolog. Such recombination events often lead to loss of heterozygosity (LOH) of SNPs that are centromere distal to the crossover. Using a PCR-based assay, we determined the position of LOH in multiple independent recombination events to a resolution of ∼4 kb. This analysis shows that dicentric chromosomes have recombination breakpoints that are broadly distributed between the two centromeres, although there is a clustering of breakpoints within 10 kb of the conditional centromere.


Asunto(s)
Rotura Cromosómica , Cromosomas Fúngicos/genética , Recombinación Genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Mapeo Cromosómico , Pérdida de Heterocigocidad/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple/genética
5.
Genetics ; 193(3): 785-801, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23307895

RESUMEN

The increasing ability to sequence and compare multiple individual genomes within a species has highlighted the fact that copy-number variation (CNV) is a substantial and underappreciated source of genetic diversity. Chromosome-scale mutations occur at rates orders of magnitude higher than base substitutions, yet our understanding of the mechanisms leading to CNVs has been lagging. We examined CNV in a region of chromosome 5 (chr5) in haploid and diploid strains of Saccharomyces cerevisiae. We optimized a CNV detection assay based on a reporter cassette containing the SFA1 and CUP1 genes that confer gene dosage-dependent tolerance to formaldehyde and copper, respectively. This optimized reporter allowed the selection of low-order gene amplification events, going from one copy to two copies in haploids and from two to three copies in diploids. In haploid strains, most events involved tandem segmental duplications mediated by nonallelic homologous recombination between flanking direct repeats, primarily Ty1 elements. In diploids, most events involved the formation of a recurrent nonreciprocal translocation between a chr5 Ty1 element and another Ty1 repeat on chr13. In addition to amplification events, a subset of clones displaying elevated resistance to formaldehyde had point mutations within the SFA1 coding sequence. These mutations were all dominant and are proposed to result in hyperactive forms of the formaldehyde dehydrogenase enzyme.


Asunto(s)
Variaciones en el Número de Copia de ADN , Diploidia , Dosificación de Gen , Genes Fúngicos/genética , Haploidia , Saccharomyces cerevisiae/genética , Aldehído Oxidorreductasas/genética , Cromosomas Fúngicos/genética , Amplificación de Genes , Duplicación de Gen , Genes Dominantes , Recombinación Homóloga , Metalotioneína/genética , Mutación Puntual , Retroelementos , Saccharomyces cerevisiae/metabolismo , Secuencias Repetidas en Tándem , Translocación Genética
6.
DNA Repair (Amst) ; 12(1): 10-7, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23182423

RESUMEN

Expansion of certain trinucleotide repeats causes several types of human diseases, and such tracts are associated with the formation of deletions and other types of genetic rearrangements in Escherichia coli, yeast, and mammalian cells. Below, we show that long (230 repeats) tracts of the trinucleotide associated with Friedreich's ataxia (GAA·TTC) stimulate both large (>50 bp) deletions and point mutations in a reporter gene located more than 1 kb from the repetitive tract. Sequence analysis of deletion breakpoints indicates that the deletions reflect non-homologous end joining of double-stranded DNA breaks (DSBs) initiated in the tract. The tract-induced point mutations appear to reflect a different mechanism involving single-strand annealing of DNA molecules generated by DSBs within the tract, followed by filling-in of single-stranded gaps by the error-prone DNA polymerase zeta.


Asunto(s)
Ataxia de Friedreich/genética , Eliminación de Gen , Genoma Fúngico , Mutación Puntual , Saccharomyces cerevisiae/genética , Repeticiones de Trinucleótidos , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN de Cadena Simple/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Genes Reporteros/genética , Genoma Fúngico/genética , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Genetics ; 190(4): 1267-84, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22267500

RESUMEN

In diploid eukaryotes, repair of double-stranded DNA breaks by homologous recombination often leads to loss of heterozygosity (LOH). Most previous studies of mitotic recombination in Saccharomyces cerevisiae have focused on a single chromosome or a single region of one chromosome at which LOH events can be selected. In this study, we used two techniques (single-nucleotide polymorphism microarrays and high-throughput DNA sequencing) to examine genome-wide LOH in a diploid yeast strain at a resolution averaging 1 kb. We examined both selected LOH events on chromosome V and unselected events throughout the genome in untreated cells and in cells treated with either γ-radiation or ultraviolet (UV) radiation. Our analysis shows the following: (1) spontaneous and damage-induced mitotic gene conversion tracts are more than three times larger than meiotic conversion tracts, and conversion tracts associated with crossovers are usually longer and more complex than those unassociated with crossovers; (2) most of the crossovers and conversions reflect the repair of two sister chromatids broken at the same position; and (3) both UV and γ-radiation efficiently induce LOH at doses of radiation that cause no significant loss of viability. Using high-throughput DNA sequencing, we also detected new mutations induced by γ-rays and UV. To our knowledge, our study represents the first high-resolution genome-wide analysis of DNA damage-induced LOH events performed in any eukaryote.


Asunto(s)
Rayos gamma , Genoma Fúngico , Pérdida de Heterocigocidad , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación , Rayos Ultravioleta , Cromátides/genética , Cromátides/efectos de la radiación , Mapeo Cromosómico , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/efectos de la radiación , Intercambio Genético , Daño del ADN , ADN de Hongos/genética , Diploidia , Secuenciación de Nucleótidos de Alto Rendimiento , Meiosis , Mitosis , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple
8.
PLoS Genet ; 7(1): e1001270, 2011 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-21249181

RESUMEN

Expansions of trinucleotide GAA•TTC tracts are associated with the human disease Friedreich's ataxia, and long GAA•TTC tracts elevate genome instability in yeast. We show that tracts of (GAA)(230)•(TTC)(230) stimulate mitotic crossovers in yeast about 10,000-fold relative to a "normal" DNA sequence; (GAA)(n)•(TTC)(n) tracts, however, do not significantly elevate meiotic recombination. Most of the mitotic crossovers are associated with a region of non-reciprocal transfer of information (gene conversion). The major class of recombination events stimulated by (GAA)(n)•(TTC)(n) tracts is a tract-associated double-strand break (DSB) that occurs in unreplicated chromosomes, likely in G1 of the cell cycle. These findings indicate that (GAA)(n)•(TTC)(n) tracts can be a potent source of loss of heterozygosity in yeast.


Asunto(s)
Mitosis , Saccharomyces cerevisiae/genética , Repeticiones de Trinucleótidos , Cromosomas Fúngicos , Roturas del ADN de Doble Cadena , Replicación del ADN , Conversión Génica , Saccharomyces cerevisiae/citología
9.
Genetics ; 183(2): 423-39, 1SI-26SI, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19635935

RESUMEN

Genetic instability at palindromes and spaced inverted repeats (IRs) leads to chromosome rearrangements. Perfect palindromes and IRs with short spacers can extrude as cruciforms or fold into hairpins on the lagging strand during replication. Cruciform resolution produces double-strand breaks (DSBs) with hairpin-capped ends, and Mre11p and Sae2p are required to cleave the hairpin tips to facilitate homologous recombination. Fragile site 2 (FS2) is a naturally occurring IR in Saccharomyces cerevisiae composed of a pair of Ty1 elements separated by approximately 280 bp. Our results suggest that FS2 forms a hairpin, rather than a cruciform, during replication in cells with low levels of DNA polymerase. Cleavage of this hairpin results in a recombinogenic DSB. We show that DSB formation at FS2 does not require Mre11p, Sae2p, Rad1p, Slx4p, Pso2p, Exo1p, Mus81p, Yen1p, or Rad27p. Also, repair of DSBs by homologous recombination is efficient in mre11 and sae2 mutants. Homologous recombination is impaired at FS2 in rad52 mutants and most aberrations reflect either joining of two broken chromosomes in a "half crossover" or telomere capping of the break. In support of hairpin formation precipitating DSBs at FS2, two telomere-capped deletions had a breakpoint near the center of the IR. In summary, Mre11p and Sae2p are not required for DSB formation at FS2 or the subsequent repair of these DSBs.


Asunto(s)
Roturas del ADN de Doble Cadena , Elementos Transponibles de ADN/genética , Endodesoxirribonucleasas/genética , Endonucleasas/genética , Exodesoxirribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Aberraciones Cromosómicas , Sitios Frágiles del Cromosoma , Cromosomas Fúngicos/genética , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , Replicación del ADN/genética , ADN de Hongos/química , ADN de Hongos/genética , Desoxirribonucleasas/genética , Desoxirribonucleasas/metabolismo , Secuencias Invertidas Repetidas , Modelos Genéticos , Mutación , Conformación de Ácido Nucleico , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/genética
10.
PLoS Genet ; 5(3): e1000410, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19282969

RESUMEN

Homologous recombination is an important mechanism for the repair of DNA damage in mitotically dividing cells. Mitotic crossovers between homologues with heterozygous alleles can produce two homozygous daughter cells (loss of heterozygosity), whereas crossovers between repeated genes on non-homologous chromosomes can result in translocations. Using a genetic system that allows selection of daughter cells that contain the reciprocal products of mitotic crossing over, we mapped crossovers and gene conversion events at a resolution of about 4 kb in a 120-kb region of chromosome V of Saccharomyces cerevisiae. The gene conversion tracts associated with mitotic crossovers are much longer (averaging about 12 kb) than the conversion tracts associated with meiotic recombination and are non-randomly distributed along the chromosome. In addition, about 40% of the conversion events have patterns of marker segregation that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle.


Asunto(s)
Mitosis/genética , Recombinación Genética , Saccharomyces cerevisiae/genética , Mapeo Cromosómico , Cromosomas Fúngicos , Reparación del ADN/genética , Fase G1 , Saccharomyces cerevisiae/citología
11.
DNA Repair (Amst) ; 7(8): 1298-308, 2008 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-18515193

RESUMEN

The rate of meiotic recombination in the yeast Saccharomyces cerevisiae varies widely in different regions of the genome with some genes having very high levels of recombination (hotspots). A variety of experiments done in yeast suggest that hotspots are a feature of chromatin structure rather than a feature of primary DNA sequence. We examined the effects of mutating a variety of enzymes that affect chromatin structure on the recombination activity of the well-characterized HIS4 hotspot including the Set2p and Dot1p histone methylases, the Hda1p and Rpd3p histone deacetylases, the Sin4p global transcription regulator, and a deletion of one of the two copies of the genes encoding histone H3-H4. Loss of Set2p or Rpd3p substantially elevated HIS4 hotspot activity, and loss of Hda1p had a smaller stimulatory effect; none of the other alterations had a significant effect. The increase of HIS4 hotspot activity in set2 and rpd3 strains is likely to be related to the recent finding that histone H3 methylation by Set2p directs deacetylation of histones by Rpd3p.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Aminohidrolasas/genética , Histona Desacetilasas/fisiología , Meiosis/fisiología , Metiltransferasas/fisiología , Pirofosfatasas/genética , Recombinación Genética/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Secuencia de Bases , Inmunoprecipitación de Cromatina , Cartilla de ADN , Histonas/fisiología
12.
Genetics ; 161(2): 493-507, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12072449

RESUMEN

In eukaryotes, a family of related protein kinases (the ATM family) is involved in regulating cellular responses to DNA damage and telomere length. In the yeast Saccharomyces cerevisiae, two members of this family, TEL1 and MEC1, have functionally redundant roles in both DNA damage repair and telomere length regulation. Strains with mutations in both genes are very sensitive to DNA damaging agents, have very short telomeres, and undergo cellular senescence. We find that strains with the double mutant genotype also have approximately 80-fold increased rates of mitotic recombination and chromosome loss. In addition, the tel1 mec1 strains have high rates of telomeric fusions, resulting in translocations, dicentrics, and circular chromosomes. Similar chromosome rearrangements have been detected in mammalian cells with mutations in ATM (related to TEL1) and ATR (related to MEC1) and in mammalian cells that approach cell crisis.


Asunto(s)
Aberraciones Cromosómicas , Proteínas Fúngicas/fisiología , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Southern Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Cromosomas Fúngicos , Proteínas Fúngicas/genética , Péptidos y Proteínas de Señalización Intracelular , Mutación , Fenotipo , Reacción en Cadena de la Polimerasa , Proteínas Serina-Treonina Quinasas , Recombinación Genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...