Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; 374: 114713, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325654

RESUMEN

There is evidence that maternal milieu and changes in environmental factors during the prenatal period may exert a lasting impact on the brain health of the newborn, even in case of neonatal brain hypoxia-ischemia (HI). The present study aimed to investigate the effects of maternal environmental enrichment (EE) on HI-induced energetic and metabolic failure, along with subsequent neural cell responses in the early postnatal period. Male Wistar pups born to dams exposed to maternal EE or standard conditions (SC) were randomly divided into Sham-SC, HI-SC, Sham-EE, and HI-EE groups. Neonatal HI was induced on postnatal day (PND) 3. The Na+,K+-ATPase activity, mitochondrial function and neuroinflammatory related-proteins were assessed at 24 h and 48 h after HI. MicroPET-FDG scans were used to measure glucose uptake at three time points: 24 h post-HI, PND18, and PND24. Moreover, neuronal preservation and glial cell responses were evaluated at PND18. After HI, animals exposed to maternal EE showed an increase in Na+,K+-ATPase activity, preservation of mitochondrial potential/mass ratio, and a reduction in mitochondrial swelling. Glucose uptake was preserved in HI-EE animals from PND18 onwards. Maternal EE attenuated HI-induced cell degeneration, white matter injury, and reduced astrocyte immunofluorescence. Moreover, the HI-EE group exhibited elevated levels of IL-10 and a reduction in Iba-1 positive cells. Data suggested that the regulation of AKT/ERK1/2 signaling pathways could be involved in the effects of maternal EE. This study evidenced that antenatal environmental stimuli could promote bioenergetic and neural resilience in the offspring against early HI damage, supporting the translational value of pregnancy-focused environmental treatments.


Asunto(s)
Hipoxia-Isquemia Encefálica , Enfermedades Neuromusculares , Animales , Ratas , Femenino , Masculino , Embarazo , Animales Recién Nacidos , Ratas Wistar , Encéfalo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Astrocitos/metabolismo , Glucosa/metabolismo , Adenosina Trifosfatasas/metabolismo
2.
Neurochem Res ; 47(7): 2032-2042, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35415802

RESUMEN

Decreased anabolic androgen levels are followed by impaired brain energy support and sensing with loss of neural connectivity during physiological aging, providing a neurobiological basis for hormone supplementation. Here, we investigated whether nandrolone decanoate (ND) administration mediates hypothalamic AMPK activation and glucose metabolism, thus affecting metabolic connectivity in brain areas of adult and aged mice. Metabolic interconnected brain areas of rodents can be detected by positron emission tomography using 18FDG-mPET. Albino CF1 mice at 3 and 18 months of age were separated into 4 groups that received daily subcutaneous injections of either ND (15 mg/kg) or vehicle for 15 days. At the in vivo baseline and on the 14th day, brain 18FDG-microPET scans were performed. Hypothalamic pAMPKT172/AMPK protein levels were assessed, and basal mitochondrial respiratory states were evaluated in synaptosomes. A metabolic connectivity network between brain areas was estimated based on 18FDG uptake. We found that ND increased the pAMPKT172/AMPK ratio in both adult and aged mice but increased 18FDG uptake and mitochondrial basal respiration only in adult mice. Furthermore, ND triggered rearrangement in the metabolic connectivity of adult mice and aged mice compared to age-matched controls. Altogether, our findings suggest that ND promotes hypothalamic AMPK activation, and distinct glucose metabolism and metabolic connectivity rearrangements in the brains of adult and aged mice.


Asunto(s)
Anabolizantes , Nandrolona , Proteínas Quinasas Activadas por AMP/metabolismo , Anabolizantes/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Suplementos Dietéticos , Fluorodesoxiglucosa F18 , Glucosa/metabolismo , Ratones , Nandrolona/metabolismo , Nandrolona/farmacología , Nandrolona Decanoato , Tomografía de Emisión de Positrones
3.
Exp Neurol ; 339: 113623, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33529673

RESUMEN

Neonatal hypoxia-ischemia (HI) is a major cause of cognitive impairments in infants. Antenatal strategies improving the intrauterine environment can have high impact decreasing pregnancy-derived intercurrences. Physical exercise alters the mother-fetus unity and has been shown to prevent the energetic challenge imposed by HI. This study aimed to reveal neuroprotective mechanisms afforded by pregnancy swimming on early metabolic failure and late cognitive damage, considering animals' sex as a variable. Pregnant Wistar rats were submitted to daily swimming exercise (20' in a tank filled with 32 °C water) during pregnancy. Neonatal HI was performed in male and female pups at postnatal day 7. Electron chain transport, mitochondrial mass and function and ROS formation were assessed in the right brain hemisphere 24 h after HI. From PND45, reference and working spatial memory were tested in the Morris water maze. MicroPET-FDG images were acquired 24 h after injury (PND8) and at PND60, following behavioral analysis. HI induced early energetic failure, decreased enzymatic activity in electron transport chain, increased production of ROS in cortex and hippocampus as well as caused brain glucose metabolism dysfunction and late cognitive impairments. Maternal swimming was able to prevent mitochondrial dysfunction and to improve spatial memory. The intergenerational effects of swimming were sex-specific, since male rats were benefited most. In conclusion, maternal swimming was able to affect the mitochondrial response to HI in the offspring's brains, preserving its function and preventing cognitive damage in a sex-dependent manner, adding relevant information on maternal exercise neuroprotection and highlighting the importance of mitochondria as a therapeutic target for HI neuropathology.


Asunto(s)
Encéfalo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/prevención & control , Mitocondrias/metabolismo , Neuroprotección/fisiología , Caracteres Sexuales , Natación/fisiología , Animales , Animales Recién Nacidos , Encéfalo/patología , Femenino , Hipoxia-Isquemia Encefálica/patología , Masculino , Aprendizaje por Laberinto/fisiología , Mitocondrias/patología , Embarazo , Ratas , Ratas Wistar , Factores de Tiempo
4.
Exp Neurol ; 330: 113317, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32304750

RESUMEN

Neonatal hypoxia ischemia (HI) is the main cause of newborn mortality and morbidity. Preclinical studies have shown that the immature rat brain is more resilient to HI injury, suggesting innate mechanisms of neuroprotection. During neonatal period brain metabolism experience changes that might greatly affect the outcome of HI injury. Therefore, the aim of the present study was to investigate how changes in brain metabolism interfere with HI outcome in different stages of CNS development. For this purpose, animals were divided into 6 groups: HIP3, HIP7 and HIP11 (HI performed at postnatal days 3, 7 and 11, respectively), and their respective shams. In vivo [18F]FDG micro positron emission tomography (microPET) imaging was performed 24 and 72 h after HI, as well as ex-vivo assessments of glucose and beta-hydroxybutyrate (BHB) oxidation. At adulthood behavioral tests and histology were performed. Behavioral and histological analysis showed greater impairments in HIP11 animals, while HIP3 rats were not affected. Changes in [18F]FDG metabolism were found only in the lesion area of HIP11, where a substantial hypometabolism was detected. Furthermore, [18F]FDG hypometabolism predicted impaired cognition and worst histological outcomes at adulthood. Finally, substrate oxidation assessments showed that glucose oxidation remained unaltered and higher level of BHB oxidation found in P3 animals, suggesting a more resilient metabolism. Overall, present results show [18F]FDG microPET predicts long-term injury outcome and suggests that higher BHB utilization is one of the mechanisms that confer the intrinsic neuroprotection to the immature brain and should be explored as a therapeutic target for treatment of HI.


Asunto(s)
Ácido 3-Hidroxibutírico/metabolismo , Glucosa/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Neuroprotección/fisiología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Wistar
5.
Mol Neurobiol ; 57(2): 635-649, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31407144

RESUMEN

Glioblastoma is the most devastating primary brain tumor. Effective therapies are not available, mainly due to high tumor heterogeneity, chemoresistance, and the difficulties imposed by blood-brain barrier. CD73, an enzyme responsible for adenosine (ADO) production, is overexpressed in cancer cells and emerges as a target for glioblastoma treatment. Indeed, ADO causes a variety of tumor-promoting actions, particularly by inducing tumor immune escape, whereas CD73 inhibition impairs tumor progression. Here, a cationic nanoemulsion to deliver CD73siRNA (NE-siRNA CD73R) via nasal route aiming glioblastoma treatment was developed. NE-siRNA CD73R was uptaken by glioma cells in culture, resulting in a parallel 60-80% decrease in AMPase activity and 30-50% in cell viability. Upon nasal delivery, NE-siRNA CD73R was detected in rat brain and serum. Notably, treatment with CD73siRNA complexes of glioma-bearing Wistar rats reduced tumor growth by 60%. Additionally, NE-siRNA CD73R treatment decreased 95% ADO levels in liquor and tumor CD73 expression, confirming in vivo CD73 silencing. Finally, no toxicity was observed in either primary astrocytes or rats with this cationic nanoemulsion. These results suggest that nasal administration of cationic NE as CD73 siRNA delivery system represents a novel potential treatment for glioblastoma. Graphical Abstract Glioblastoma is the most common and devastating form of primary brain tumor. CD73, a protein involved in cell-cell adhesion and migration processes and also responsible for extracellular adenosine (ADO) production, is overexpressed by glioma cells and emerges as an important target for glioma treatment. Indeed, ADO participates in tumor immune escape, cell proliferation, and angiogenesis, and CD73 inhibition impairs those processes. Here, a cationic nanoemulsion to deliver CD73 siRNA (NE-siRNA CD73R) via nasal route aiming glioblastoma treatment was developed. NE-siRNA CD73R knockdown in vitro and in vivo CD73. Upon nasal delivery of NE-siRNA CD73R, the treatment markedly reduced tumor volume by 60% in a rat preclinical glioblastoma model. The treatment was well tolerated, and did not induce kidney, liver, lung, olfactory, bone marrow, or behavior alterations. These results indicate that the nasal administration of NE as a CD73 siRNA delivery system offered an efficient means of gene knockdown and may represent a potential alternative for glioblastoma treatment.


Asunto(s)
5'-Nucleotidasa/metabolismo , Emulsiones/administración & dosificación , Técnicas de Transferencia de Gen , Glioblastoma/terapia , Nanopartículas/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Administración Intranasal , Animales , Astrocitos/patología , Neoplasias Encefálicas/terapia , Cationes , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Proteínas Ligadas a GPI/metabolismo , Glioblastoma/patología , Humanos , Masculino , Ratas Wistar
6.
Neuroscience ; 210: 431-41, 2012 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-22441035

RESUMEN

Despite the beneficial effects of cell-based therapies on brain repair shown in most studies, there has not been a consensus regarding the optimal dose of human umbilical cord blood cells (HUCBC) for neonatal hypoxia-ischemia (HI). In this study, we compared the long-term effects of intravenous administration of HUCBC at three different doses on spatial memory and brain morphological changes after HI in newborn Wistar rats. In addition, we tested whether the transplanted HUCBC migrate to the injured brain after transplantation. Seven-day-old animals underwent right carotid artery occlusion and were exposed to 8% O(2) inhalation for 2 h. After 24 h, randomly selected animals were assigned to four different experimental groups: HI rats administered with vehicle (HI+vehicle), HI rats treated with 1×10(6) (HI+low-dose), 1×10(7) (HI+medium-dose), and 1×10(8) (HI+high-dose) HUCBC into the jugular vein. A control group (sham-operated) was also included in this study. After 8 weeks of transplantation, spatial memory performance was assessed using the Morris water maze (MWM), and subsequently, the animals were euthanized for brain morphological analysis using stereological methods. In addition, we performed immunofluorescence and polymerase chain reaction (PCR) analyses to identify HUCBC in the rat brain 7 days after transplantation. The MWM test showed a significant spatial memory recovery at the highest HUCBC dose compared with HI+vehicle rats (P<0.05). Furthermore, the brain atrophy was also significantly lower in the HI+medium- and high-dose groups compared with the HI+vehicle animals (P<0.01; 0.001, respectively). In addition, HUCBC were demonstrated to be localized in host brains by immunohistochemistry and PCR analyses 7 days after intravenous administration. These results revealed that HUCBC transplantation has the dose-dependent potential to promote robust tissue repair and stable cognitive improvement after HI brain injury.


Asunto(s)
Encéfalo/patología , Trasplante de Células Madre de Sangre del Cordón Umbilical/métodos , Hipoxia-Isquemia Encefálica/cirugía , Trastornos de la Memoria/prevención & control , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Sangre Fetal/trasplante , Técnica del Anticuerpo Fluorescente , Humanos , Hipoxia-Isquemia Encefálica/complicaciones , Aprendizaje por Laberinto , Memoria , Trastornos de la Memoria/etiología , Microscopía Confocal , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...