Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125164

RESUMEN

This study identifies the optimal combination of active and passive thermoplastic materials for producing multi-material programmable 3D structures. These structures can undergo shape changes with varying radii of curvature over time when exposed to hot water. The research focuses on examining the thermal, thermomechanical, and mechanical properties of active (PLA) and passive (PRO-PLA, ABS, and TPU) materials. It also includes the experimental determination of the radius of curvature of the programmed 3D structures. The pairing of active PLA with passive PRO-PLA was found to be the most effective for creating complex programmable 3D structures capable of two-sided transformation. This efficacy is attributed to the adequate apparent shear strength, significant differences in thermomechanical shrinkage between the two materials, identical printing parameters for both materials, and the lowest bending storage modulus of PRO-PLA among the passive materials within the activation temperature range. Multi-material 3D printing has also proven to be a suitable method for producing programmable 3D structures for practical applications such as phone stands, phone cases, door hangers, etc. It facilitates the programming of the active material and ensures the dimensional stability of the passive components of programmable 3D structures during thermal activation.

2.
Polymers (Basel) ; 16(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38891473

RESUMEN

Polymers have become an important part of everyday life, but most of the polymers currently used are petroleum-based. This poses an environmental problem, especially with respect to products that are quickly discarded. For this reason, current packaging development focuses on sustainable materials as an alternative to synthetic ones. Nanocellulose, a relatively new material derived from cellulose, has unique properties such as high strength, low density, high surface area, and good barrier properties, making it popular in various applications. Additionally, 3D printing technologies have become an important part of industrial and commercial processes, enabling the realization of innovative ideas and functionalities. The main aim of this research was to develop a hydrogel of bacterial nanocellulose with suitable rheological properties for the 3D printing of polymer foils. Three variations of bacterial nanocellulose hydrogel differing in ratios of bacterial nanocellulose to cationic starch were produced. The rheological studies confirmed the suitability of the hydrogels for 3D printing. Foils were successfully 3D-printed using a modified 3D printer. The physical-mechanical, surface, and optical properties of the foils were determined. All foils were homogeneous with adequate mechanical properties. The 3D-printed foils with the highest amount of cationic starch were the most homogeneous and transparent and, despite their rigidity, very strong. All foils were semi-transparent, had a non-glossy surface, and retained poor water wettability.

3.
Polymers (Basel) ; 13(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34960994

RESUMEN

The aim of the study was to isolate lignin from organosolv, beech tree (Fagus sylvatica), and Japanese knotweed (Reynoutria japonica), to use it for paper surface and to replace part of the non-renewable product resources with bio-based ones. A total of nine coated samples with different lignin formulations and starch were compounded, prepared, and evaluated. The basic (grammage, thickness, specific density), mechanical (elongation at break, tensile, burst and tear indices), and barrier properties (contact angle, water penetration, water vapour permeability, kit test) of the coated papers were investigated. The analysis showed no significant difference in tensile properties between uncoated and coated samples. Furthermore, the decrease in water vapour transmission rate and the lower contact angle for coated samples were nevertheless confirmed. The novel coating materials show promising products with very good barrier properties. Finally, the correlation between structural, morphological, and (other) natural lignin-based factors was revealed, highlighting the importance of parameters such as the equivalence ratio of aliphatic and phenolic hydroxyl groups or the average molecular weight. Tuning functionality by design could optimise performance in the future.

4.
Polymers (Basel) ; 13(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209091

RESUMEN

Polylactic acid (PLA) is one of the most suitable materials for 3D printing. Blending with nanoparticles improves some of its properties, broadening its application possibilities. The article presents a study of composite PLA matrix filaments with added unmodified and lignin/polymerised lignin surface-modified nanofibrillated cellulose (NFC). The influence of untreated and surface-modified NFC on morphological, mechanical, technological, infrared spectroscopic, and dynamic mechanical properties was evaluated for different groups of samples. As determined by the stereo and scanning electron microscopy, the unmodified and surface-modified NFCs with lignin and polymerised lignin were present in the form of plate-shaped agglomerates. The addition of NFC slightly reduced the filaments' tensile strength, stretchability, and ability to absorb energy, while in contrast, the initial modulus slightly improved. By adding NFC to the PLA matrix, the bending storage modulus (E') decreased slightly at lower temperatures, especially in the PLA samples with 3 wt% and 5 wt% NFC. When NFC was modified with lignin and polymerised lignin, an increase in E' was noticed, especially in the glassy state.

5.
Polymers (Basel) ; 14(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35012139

RESUMEN

The aim of our research was to investigate and optimise the main 3D printing process parameters that directly or indirectly affect the shape transformation capability and to determine the optimal transformation conditions to achieve predicted extent, and accurate and reproducible transformations of 3D printed, shape-changing two-material structures based on PLA and TPU. The shape-changing structures were printed using the FDM technology. The influence of each printing parameter that affects the final printability of shape-changing structures is presented and studied. After optimising the 3D printing process parameters, the extent, accuracy and reproducibility of the shape transformation performance for four-layer structures were analysed. The shape transformation was performed in hot water at different activation temperatures. Through a careful selection of 3D printing process parameters and transformation conditions, the predicted extent, accuracy and good reproducibility of shape transformation for 3D printed structures were achieved. The accurate deposition of filaments in the layers was achieved by adjusting the printing speed, flow rate and cooling conditions of extruded filaments. The shape transformation capability of 3D printed structures with a defined shape and defined active segment dimensions was influenced by the relaxation of compressive and tensile residual stresses in deposited filaments in the printed layers of the active material and different activation temperatures of the transformation.

6.
Acta Chim Slov ; 66(3): 614-621, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33855523

RESUMEN

In the material extrusion of the thermoplastic filaments, known as Fused Deposition Modelling, usually, pure thermoplastic polymers are used. Recently, the focus of the research is given to the development of new biocomposite thermoplastic materials. In our research, 3D printable biocomposite filaments, made with the addition of 50 wt.% of cardboard dust to the HDPE and PLA polymer matrix were studied. The influence of the added cardboard dust on structural, morphological and mechanical properties of the 3D printable biocomposite filaments was investigated. With the addition of the corrugated cardboard dust into the HDPE and PLA polymer matrix the changes in density, uniformity, chemical structure and transition temperatures of the samples were detected. The addition of the cardboard dust into the HDPE polymer matrix lead to low tenacity, toughness, deformability resulting in brittleness of the 3D printable biocomposite filament, whereas the addition of the cardboard dust into the PLA polymer matrix lowered tensile properties, but didn't affected bending toughness and has even improved compression strength of the 3D printable filament.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA