Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
mBio ; 15(4): e0045424, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38497655

RESUMEN

Salmonella serovars Typhi and Paratyphi cause a prolonged illness known as enteric fever, whereas other serovars cause acute gastroenteritis. Mechanisms responsible for the divergent clinical manifestations of nontyphoidal and enteric fever Salmonella infections have remained elusive. Here, we show that S. Typhi and S. Paratyphi A can persist within human macrophages, whereas S. Typhimurium rapidly induces apoptotic macrophage cell death that is dependent on Salmonella pathogenicity island 2 (SPI2). S. Typhi and S. Paratyphi A lack 12 specific SPI2 effectors with pro-apoptotic functions, including nine that target nuclear factor κB (NF-κB). Pharmacologic inhibition of NF-κB or heterologous expression of the SPI2 effectors GogA or GtgA restores apoptosis of S. Typhi-infected macrophages. In addition, the absence of the SPI2 effector SarA results in deficient signal transducer and activator of transcription 1 (STAT1) activation and interleukin 12 production, leading to impaired TH1 responses in macrophages and humanized mice. The absence of specific nontyphoidal SPI2 effectors may allow S. Typhi and S. Paratyphi A to cause chronic infections. IMPORTANCE: Salmonella enterica is a common cause of gastrointestinal infections worldwide. The serovars Salmonella Typhi and Salmonella Paratyphi A cause a distinctive systemic illness called enteric fever, whose pathogenesis is incompletely understood. Here, we show that enteric fever Salmonella serovars lack 12 specific virulence factors possessed by nontyphoidal Salmonella serovars, which allow the enteric fever serovars to persist within human macrophages. We propose that this fundamental difference in the interaction of Salmonella with human macrophages is responsible for the chronicity of typhoid and paratyphoid fever, suggesting that targeting the nuclear factor κB (NF-κB) complex responsible for macrophage survival could facilitate the clearance of persistent bacterial infections.


Asunto(s)
Salmonella typhi , Salmonella , Fiebre Tifoidea , Humanos , Animales , Ratones , Salmonella typhi/genética , Fiebre Tifoidea/microbiología , FN-kappa B , Macrófagos/microbiología
2.
Nature ; 624(7992): 621-629, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38049589

RESUMEN

Type 2 diabetes mellitus (T2D), a major cause of worldwide morbidity and mortality, is characterized by dysfunction of insulin-producing pancreatic islet ß cells1,2. T2D genome-wide association studies (GWAS) have identified hundreds of signals in non-coding and ß cell regulatory genomic regions, but deciphering their biological mechanisms remains challenging3-5. Here, to identify early disease-driving events, we performed traditional and multiplexed pancreatic tissue imaging, sorted-islet cell transcriptomics and islet functional analysis of early-stage T2D and control donors. By integrating diverse modalities, we show that early-stage T2D is characterized by ß cell-intrinsic defects that can be proportioned into gene regulatory modules with enrichment in signals of genetic risk. After identifying the ß cell hub gene and transcription factor RFX6 within one such module, we demonstrated multiple layers of genetic risk that converge on an RFX6-mediated network to reduce insulin secretion by ß cells. RFX6 perturbation in primary human islet cells alters ß cell chromatin architecture at regions enriched for T2D GWAS signals, and population-scale genetic analyses causally link genetically predicted reduced RFX6 expression with increased T2D risk. Understanding the molecular mechanisms of complex, systemic diseases necessitates integration of signals from multiple molecules, cells, organs and individuals, and thus we anticipate that this approach will be a useful template to identify and validate key regulatory networks and master hub genes for other diseases or traits using GWAS data.


Asunto(s)
Diabetes Mellitus Tipo 2 , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Islotes Pancreáticos , Humanos , Estudios de Casos y Controles , Separación Celular , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Redes Reguladoras de Genes/genética , Estudio de Asociación del Genoma Completo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Reproducibilidad de los Resultados
3.
Sci Adv ; 9(24): eade9488, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37327334

RESUMEN

Biomedical devices comprise a major component of modern medicine, however immune-mediated fibrosis and rejection can limit their function over time. Here, we describe a humanized mouse model that recapitulates fibrosis following biomaterial implantation. Cellular and cytokine responses to multiple biomaterials were evaluated across different implant sites. Human innate immune macrophages were verified as essential to biomaterial rejection in this model and were capable of cross-talk with mouse fibroblasts for collagen matrix deposition. Cytokine and cytokine receptor array analysis confirmed core signaling in the fibrotic cascade. Foreign body giant cell formation, often unobserved in mice, was also prominent. Last, high-resolution microscopy coupled with multiplexed antibody capture digital profiling analysis supplied spatial resolution of rejection responses. This model enables the study of human immune cell-mediated fibrosis and interactions with implanted biomaterials and devices.


Asunto(s)
Materiales Biocompatibles , Cuerpos Extraños , Humanos , Animales , Ratones , Reacción a Cuerpo Extraño/etiología , Modelos Animales de Enfermedad , Citocinas , Fibrosis
4.
FASEB J ; 37(6): e22995, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37219526

RESUMEN

Immuno-oncology (IO)-based therapies such as checkpoint inhibitors, bi-specific antibodies, and CAR-T-cell therapies have shown significant success in the treatment of several cancer indications. However, these therapies can result in the development of severe adverse events, including cytokine release syndrome (CRS). Currently, there is a paucity of in vivo models that can evaluate dose-response relationships for both tumor control and CRS-related safety issues. We tested an in vivo PBMC humanized mouse model to assess both treatment efficacy against specific tumors and the concurrent cytokine release profiles for individual human donors after treatment with a CD19xCD3 bispecific T-cell engager (BiTE). Using this model, we evaluated tumor burden, T-cell activation, and cytokine release in response to bispecific T-cell-engaging antibody in humanized mice generated with different PBMC donors. The results show that PBMC engrafted NOD-scid Il2rgnull mice lacking expression of mouse MHC class I and II (NSG-MHC-DKO mice) and implanted with a tumor xenograft predict both efficacy for tumor control by CD19xCD3 BiTE and stimulated cytokine release. Moreover, our findings indicate that this PBMC-engrafted model captures variability among donors for tumor control and cytokine release following treatment. Tumor control and cytokine release were reproducible for the same PBMC donor in separate experiments. The PBMC humanized mouse model described here is a sensitive and reproducible platform that identifies specific patient/cancer/therapy combinations for treatment efficacy and development of complications.


Asunto(s)
Leucocitos Mononucleares , Linfocitos T , Humanos , Animales , Ratones , Ratones Endogámicos NOD , Resultado del Tratamiento , Síndrome de Liberación de Citoquinas , Citocinas , Modelos Animales de Enfermedad , Ratones Noqueados , Ratones SCID
5.
J Leukoc Biol ; 113(5): 418-433, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36801998

RESUMEN

Agents that induce inflammation have been used since the 18th century for the treatment of cancer. The inflammation induced by agents such as Toll-like receptor agonists is thought to stimulate tumor-specific immunity in patients and augment control of tumor burden. While NOD-scid IL2rγnull mice lack murine adaptive immunity (T cells and B cells), these mice maintain a residual murine innate immune system that responds to Toll-like receptor agonists. Here we describe a novel NOD-scid IL2rγnull mouse lacking murine TLR4 that fails to respond to lipopolysaccharide. NSG-Tlr4null mice support human immune system engraftment and enable the study of human-specific responses to TLR4 agonists in the absence of the confounding effects of a murine response. Our data demonstrate that specific stimulation of TLR4 activates human innate immune systems and delays the growth kinetics of a human patient-derived xenograft melanoma tumor.


Asunto(s)
Inmunodeficiencia Combinada Grave , Receptor Toll-Like 4 , Animales , Humanos , Ratones , Inmunidad Innata , Inflamación , Ratones Endogámicos NOD , Ratones SCID , Receptor Toll-Like 4/genética
6.
Nat Immunol ; 24(4): 652-663, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36807641

RESUMEN

Genetic susceptibility to type 1 diabetes is associated with homozygous expression of major histocompatibility complex class II alleles that carry specific beta chain polymorphisms. Why heterozygous expression of these major histocompatibility complex class II alleles does not confer a similar predisposition is unresolved. Using a nonobese diabetic mouse model, here we show that heterozygous expression of the type 1 diabetes-protective allele I-Ag7 ß56P/57D induces negative selection to the I-Ag7-restricted T cell repertoire, including beta-islet-specific CD4+ T cells. Surprisingly, negative selection occurs despite I-Ag7 ß56P/57D having a reduced ability to present beta-islet antigens to CD4+ T cells. Peripheral manifestations of non-cognate negative selection include a near complete loss of beta-islet-specific CXCR6+ CD4+ T cells, an inability to cross-prime islet-specific glucose-6-phosphatase catalytic subunit-related protein and insulin-specific CD8+ T cells and disease arrest at the insulitis stage. These data reveal that negative selection on non-cognate self-antigens in the thymus can promote T cell tolerance and protection from autoimmunity.


Asunto(s)
Diabetes Mellitus Tipo 1 , Ratones , Animales , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Antígenos de Histocompatibilidad Clase II , Insulina/metabolismo , Ratones Endogámicos NOD
7.
Nat Rev Clin Oncol ; 20(3): 192-206, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36635480

RESUMEN

Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.


Asunto(s)
Neoplasias , Animales , Ratones , Humanos , Neoplasias/terapia , Modelos Animales de Enfermedad , Inmunoterapia , Biomarcadores , Sistema Inmunológico
8.
Bioeng Transl Med ; 8(1): e10273, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684105

RESUMEN

Targeted drug delivery systems hold the remarkable potential to improve the therapeutic index of anticancer medications markedly. Here, we report a targeted delivery platform for cancer treatment using clathrin light chain (CLC)-conjugated drugs. We conjugated CLC to paclitaxel (PTX) through a glutaric anhydride at high efficiency. Labeled CLCs localized to 4T1 tumors implanted in mice, and conjugation of PTX to CLC enhanced its delivery to these tumors. Treatment of three different mouse models of cancer-melanoma, breast cancer, and lung cancer-with CLC-PTX resulted in significant growth inhibition of both the primary tumor and metastatic lesions, as compared to treatment with free PTX. CLC-PTX treatment caused a marked increase in apoptosis of tumor cells and reduction of tumor angiogenesis. Our data suggested HSP70 as a binding partner for CLC. Our study demonstrates that CLC-based drug-conjugates constitute a novel drug delivery platform that can augment the effects of chemotherapeutics in treating a variety of cancers. Moreover, conjugation of therapeutics with CLC may be used as means by which drugs are delivered specifically to primary tumors and metastatic lesions, thereby prolonging the survival of cancer patients.

9.
Diabetes ; 72(2): 261-274, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36346618

RESUMEN

Identifying the early islet cellular processes of autoimmune type 1 diabetes (T1D) in humans is challenging given the absence of symptoms during this period and the inaccessibility of the pancreas for sampling. In this article, we study temporal events in pancreatic islets in LEW.1WR1 rats, in which autoimmune diabetes can be induced with virus infection, by performing transcriptional analysis of islets harvested during the prediabetic period. Single-cell RNA-sequencing and differential expression analyses of islets from prediabetic rats reveal subsets of ß- and α-cells under stress as evidenced by heightened expression, over time, of a transcriptional signature characterized by interferon-stimulated genes, chemokines including Cxcl10, major histocompatibility class I, and genes for the ubiquitin-proteasome system. Mononuclear phagocytes show increased expression of inflammatory markers. RNA-in situ hybridization of rat pancreatic tissue defines the spatial distribution of Cxcl10+ ß- and α-cells and their association with CD8+ T cell infiltration, a hallmark of insulitis and islet destruction. Our studies define early islet transcriptional events during immune cell recruitment to islets and reveal spatial associations between stressed ß- and α-cells and immune cells. Insights into such early processes can assist in the development of therapeutic and prevention strategies for T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Estado Prediabético , Humanos , Ratas , Animales , Diabetes Mellitus Tipo 1/metabolismo , Islotes Pancreáticos/metabolismo , ARN/metabolismo , Inflamación/genética , Inflamación/metabolismo , Ratas Endogámicas Lew
10.
FASEB J ; 36(9): e22476, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35959876

RESUMEN

Human innate immunity plays a critical role in tumor surveillance and in immunoregulation within the tumor microenvironment. Natural killer (NK) cells are innate lymphoid cells that have opposing roles in the tumor microenvironment, including NK cell subsets that mediate tumor cell cytotoxicity and subsets with regulatory function that contribute to the tumor immune suppressive environment. The balance between effector and regulatory NK cell subsets has been studied extensively in murine models of cancer, but there is a paucity of models to study human NK cell function in tumorigenesis. Humanized mice are a powerful alternative to syngeneic mouse tumor models for the study of human immuno-oncology and have proven effective tools to test immunotherapies targeting T cells. However, human NK cell development and survival in humanized NOD-scid-IL2rgnull (NSG) mice are severely limited. To enhance NK cell development, we have developed NSG mice that constitutively expresses human Interleukin 15 (IL15), NSG-Tg(Hu-IL15). Following hematopoietic stem cell engraftment of NSG-Tg(Hu-IL15) mice, significantly higher levels of functional human CD56+ NK cells are detectable in blood and spleen, as compared to NSG mice. Hematopoietic stem cell (HSC)-engrafted NSG-Tg(Hu-IL15) mice also supported the development of human CD3+ T cells, CD20+ B cells, and CD33+ myeloid cells. Moreover, the growth kinetics of a patient-derived xenograft (PDX) melanoma were significantly delayed in HSC-engrafted NSG-Tg(Hu-IL15) mice as compared to HSC-engrafted NSG mice demonstrating that human NK cells have a key role in limiting the tumor growth. Together, these data demonstrate that HSC-engrafted NSG-Tg(Hu-IL15) mice support enhanced development of functional human NK cells, which limit the growth of PDX tumors.


Asunto(s)
Inmunidad Innata , Interleucina-15 , Animales , Modelos Animales de Enfermedad , Humanos , Subunidad gamma Común de Receptores de Interleucina/genética , Interleucina-15/genética , Células Asesinas Naturales , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID
11.
Methods Mol Biol ; 2427: 215-234, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35619037

RESUMEN

Efforts to understand molecular mechanisms of pathogenesis of the human-restricted pathogen Salmonella enterica serovar Typhi, the causative agent of typhoid fever, have been hampered by the lack of a tractable small animal model. This obstacle has been surmounted by a humanized mouse model in which genetically modified mice are engrafted with purified CD34+ stem cells from human umbilical cord blood, designated CD34+ Hu-NSG (formerly hu-SRC-SCID) mice. We have shown that these mice develop a lethal systemic infection with S. Typhi that is dependent on the presence of engrafted human hematopoietic cells. Immunological and pathological features of human typhoid are recapitulated in this model, which has been successfully employed for the identification of bacterial genetic determinants of S. Typhi virulence. Here we describe the methods used to infect CD34+ Hu-NSG mice with S. Typhi in humanized mice and to construct and analyze a transposon-directed insertion site sequencing S. Typhi library, and provide general considerations for the use of humanized mice for the study of a human-restricted pathogen.


Asunto(s)
Salmonella typhi , Fiebre Tifoidea , Animales , Modelos Animales de Enfermedad , Ratones , Ratones SCID , Salmonella typhi/genética , Fiebre Tifoidea/microbiología , Fiebre Tifoidea/patología , Virulencia/genética
12.
Mol Metab ; 56: 101417, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34902607

RESUMEN

BACKGROUND: Type 1 diabetes (T1D) is an autoimmune disease characterized by impaired immune tolerance to ß-cell antigens and progressive destruction of insulin-producing ß-cells. Animal models have provided valuable insights for understanding the etiology and pathogenesis of this disease, but they fall short of reflecting the extensive heterogeneity of the disease in humans, which is contributed by various combinations of risk gene alleles and unique environmental factors. Collectively, these factors have been used to define subgroups of patients, termed endotypes, with distinct predominating disease characteristics. SCOPE OF REVIEW: Here, we review the gaps filled by these models in understanding the intricate involvement and regulation of the immune system in human T1D pathogenesis. We describe the various models developed so far and the scientific questions that have been addressed using them. Finally, we discuss the limitations of these models, primarily ascribed to hosting a human immune system (HIS) in a xenogeneic recipient, and what remains to be done to improve their physiological relevance. MAJOR CONCLUSIONS: To understand the role of genetic and environmental factors or evaluate immune-modifying therapies in humans, it is critical to develop and apply models in which human cells can be manipulated and their functions studied under conditions that recapitulate as closely as possible the physiological conditions of the human body. While microphysiological systems and living tissue slices provide some of these conditions, HIS mice enable more extensive analyses using in vivo systems.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Animales , Diabetes Mellitus Tipo 1/genética , Humanos , Sistema Inmunológico/patología , Células Secretoras de Insulina/patología , Ratones
13.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34504013

RESUMEN

Islet transplantation for type 1 diabetes treatment has been limited by the need for lifelong immunosuppression regimens. This challenge has prompted the development of macroencapsulation devices (MEDs) to immunoprotect the transplanted islets. While promising, conventional MEDs are faced with insufficient transport of oxygen, glucose, and insulin because of the reliance on passive diffusion. Hence, these devices are constrained to two-dimensional, wafer-like geometries with limited loading capacity to maintain cells within a distance of passive diffusion. We hypothesized that convective nutrient transport could extend the loading capacity while also promoting cell viability, rapid glucose equilibration, and the physiological levels of insulin secretion. Here, we showed that convective transport improves nutrient delivery throughout the device and affords a three-dimensional capsule geometry that encapsulates 9.7-fold-more cells than conventional MEDs. Transplantation of a convection-enhanced MED (ceMED) containing insulin-secreting ß cells into immunocompetent, hyperglycemic rats demonstrated a rapid, vascular-independent, and glucose-stimulated insulin response, resulting in early amelioration of hyperglycemia, improved glucose tolerance, and reduced fibrosis. Finally, to address potential translational barriers, we outlined future steps necessary to optimize the ceMED design for long-term efficacy and clinical utility.


Asunto(s)
Encapsulación Celular/métodos , Sistemas de Liberación de Medicamentos/métodos , Células Secretoras de Insulina/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Convección , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Sistemas de Liberación de Medicamentos/instrumentación , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Secreción de Insulina/fisiología , Células Secretoras de Insulina/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Masculino , Ratas
15.
Blood ; 137(4): 500-512, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33507291

RESUMEN

Glucocorticoid (GC) resistance remains a clinical challenge in pediatric acute lymphoblastic leukemia where response to GC is a reliable prognostic indicator. To identify GC resistance pathways, we conducted a genome-wide, survival-based, short hairpin RNA screen in murine T-cell acute lymphoblastic leukemia (T-ALL) cells. Genes identified in the screen interfere with cyclic adenosine monophosphate (cAMP) signaling and are underexpressed in GC-resistant or relapsed ALL patients. Silencing of the cAMP-activating Gnas gene interfered with GC-induced gene expression, resulting in dexamethasone resistance in vitro and in vivo. We demonstrate that cAMP signaling synergizes with dexamethasone to enhance cell death in GC-resistant human T-ALL cells. We find the E prostanoid receptor 4 expressed in T-ALL samples and demonstrate that prostaglandin E2 (PGE2) increases intracellular cAMP, potentiates GC-induced gene expression, and sensitizes human T-ALL samples to dexamethasone in vitro and in vivo. These findings identify PGE2 as a target for GC resensitization in relapsed pediatric T-ALL.


Asunto(s)
AMP Cíclico/fisiología , Dexametasona/farmacología , Dinoprostona/farmacología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Sistemas de Mensajero Secundario/efectos de los fármacos , 1-Metil-3-Isobutilxantina/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Niño , Cromograninas/antagonistas & inhibidores , Colforsina/farmacología , AMP Cíclico/farmacología , Dexametasona/administración & dosificación , Dinoprostona/administración & dosificación , Dinoprostona/antagonistas & inhibidores , Dinoprostona/fisiología , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/fisiología , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gs/deficiencia , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Modelos Animales , Terapia Molecular Dirigida , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Quimera por Radiación , Receptores de Glucocorticoides/biosíntesis , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/fisiología , Subtipo EP4 de Receptores de Prostaglandina E/biosíntesis , Subtipo EP4 de Receptores de Prostaglandina E/genética , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Cell ; 183(5): 1219-1233.e18, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33242418

RESUMEN

Cancer therapies kill tumors either directly or indirectly by evoking immune responses and have been combined with varying levels of success. Here, we describe a paradigm to control cancer growth that is based on both direct tumor killing and the triggering of protective immunity. Genetic ablation of serine protease inhibitor SerpinB9 (Sb9) results in the death of tumor cells in a granzyme B (GrB)-dependent manner. Sb9-deficient mice exhibited protective T cell-based host immunity to tumors in association with a decline in GrB-expressing immunosuppressive cells within the tumor microenvironment (TME). Maximal protection against tumor development was observed when the tumor and host were deficient in Sb9. The therapeutic utility of Sb9 inhibition was demonstrated by the control of tumor growth, resulting in increased survival times in mice. Our studies describe a molecular target that permits a combination of tumor ablation, interference within the TME, and immunotherapy in one potential modality.


Asunto(s)
Citotoxicidad Inmunológica , Inmunoterapia , Proteínas de la Membrana/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Serpinas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citotoxicidad Inmunológica/efectos de los fármacos , Progresión de la Enfermedad , Femenino , Eliminación de Gen , Granzimas/metabolismo , Inmunidad/efectos de los fármacos , Melanoma/patología , Ratones Endogámicos C57BL , Neoplasias/prevención & control , Bibliotecas de Moléculas Pequeñas/farmacología , Células del Estroma/efectos de los fármacos , Células del Estroma/patología , Microambiente Tumoral/efectos de los fármacos
17.
FASEB J ; 34(9): 12963-12975, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32772418

RESUMEN

Immunotherapy is a powerful treatment strategy being applied to cancer, autoimmune diseases, allergies, and transplantation. Although therapeutic monoclonal antibodies (mAbs) have demonstrated significant clinical efficacy, there is also the potential for severe adverse events, including cytokine release syndrome (CRS). CRS is characterized by the rapid production of inflammatory cytokines following delivery of therapy, with symptoms ranging from mild fever to life-threating pathology and multi-organ failure. Overall there is a paucity of models to reliably and accurately predict the induction of CRS by immune therapeutics. Here, we describe the development of a humanized mouse model based on the NOD-scid IL2rgnull (NSG) mouse to study CRS in vivo. PBMC-engrafted NSG, NSG-MHC-DKO, and NSG-SGM3 mice were used to study cytokine release in response to treatment with mAb immunotherapies. Our data show that therapeutic-stimulated cytokine release in these PBMC-based NSG models captures the variation in cytokine release between individual donors, is drug dependent, occurs in the absence of acute xeno-GVHD, highlighting the specificity of the assay, and shows a robust response following treatment with a TGN1412 analog, a CD28 superagonist. Overall our results demonstrate that PBMC-engrafted NSG models are rapid, sensitive, and reproducible platforms to screen novel therapeutics for CRS.


Asunto(s)
Anticuerpos Monoclonales/efectos adversos , Síndrome de Liberación de Citoquinas/inmunología , Citocinas/inmunología , Modelos Animales de Enfermedad , Leucocitos Mononucleares/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Síndrome de Liberación de Citoquinas/inducido químicamente , Femenino , Ratones , Ratones Endogámicos NOD , Ratones SCID
18.
Cell Rep ; 32(2): 107894, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32668238

RESUMEN

Understanding the root causes of autoimmune diseases is hampered by the inability to access relevant human tissues and identify the time of disease onset. To examine the interaction of immune cells and their cellular targets in type 1 diabetes, we differentiated human induced pluripotent stem cells into pancreatic endocrine cells, including ß cells. Here, we describe an in vitro platform that models features of human type 1 diabetes using stress-induced patient-derived endocrine cells and autologous immune cells. We demonstrate a cell-type-specific response by autologous immune cells against induced pluripotent stem cell-derived ß cells, along with a reduced effect on α cells. This approach represents a path to developing disease models that use patient-derived cells to predict the outcome of an autoimmune response.


Asunto(s)
Diabetes Mellitus Tipo 1/patología , Modelos Biológicos , Células Madre Pluripotentes/patología , Animales , Citotoxicidad Inmunológica , Diabetes Mellitus Tipo 1/inmunología , Estrés del Retículo Endoplásmico , Células Secretoras de Glucagón/patología , Humanos , Células Secretoras de Insulina/patología , Activación de Linfocitos/inmunología , Ratones , Linfocitos T/inmunología
19.
Endocrinology ; 161(8)2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32428240

RESUMEN

Selective inhibitors of sodium glucose cotransporter-2 (SGLT2) are widely used for the treatment of type 2 diabetes and act primarily to lower blood glucose by preventing glucose reabsorption in the kidney. However, it is controversial whether these agents also act on the pancreatic islet, specifically the α cell, to increase glucagon secretion. To determine the effects of SGLT2 on human islets, we analyzed SGLT2 expression and hormone secretion by human islets treated with the SGLT2 inhibitor dapagliflozin (DAPA) in vitro and in vivo. Compared to the human kidney, SLC5A2 transcript expression was 1600-fold lower in human islets and SGLT2 protein was not detected. In vitro, DAPA treatment had no effect on glucagon or insulin secretion by human islets at either high or low glucose concentrations. In mice bearing transplanted human islets, 1 and 4 weeks of DAPA treatment did not alter fasting blood glucose, human insulin, and total glucagon levels. Upon glucose stimulation, DAPA treatment led to lower blood glucose levels and proportionally lower human insulin levels, irrespective of treatment duration. In contrast, after glucose stimulation, total glucagon was increased after 1 week of DAPA treatment but normalized after 4 weeks of treatment. Furthermore, the human islet grafts showed no effects of DAPA treatment on hormone content, endocrine cell proliferation or apoptosis, or amyloid deposition. These data indicate that DAPA does not directly affect the human pancreatic islet, but rather suggest an indirect effect where lower blood glucose leads to reduced insulin secretion and a transient increase in glucagon secretion.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Células Secretoras de Glucagón/efectos de los fármacos , Glucósidos/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Adolescente , Adulto , Animales , Células Cultivadas , Femenino , Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Xenoinjertos , Humanos , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/fisiología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Persona de Mediana Edad , Transducción de Señal/efectos de los fármacos , Especificidad de la Especie , Adulto Joven
20.
Nat Biomed Eng ; 4(8): 814-826, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32231313

RESUMEN

The long-term function of transplanted therapeutic cells typically requires systemic immune suppression. Here, we show that a retrievable implant comprising a silicone reservoir and a porous polymeric membrane protects human cells encapsulated in it after implant transplantation in the intraperitoneal space of immunocompetent mice. Membranes with pores 1 µm in diameter allowed host macrophages to migrate into the device without the loss of transplanted cells, whereas membranes with pore sizes <0.8 µm prevented their infiltration by immune cells. A synthetic polymer coating prevented fibrosis and was necessary for the long-term function of the device. For >130 days, the device supported human cells engineered to secrete erythropoietin in immunocompetent mice, as well as transgenic human cells carrying an inducible gene circuit for the on-demand secretion of erythropoietin. Pancreatic islets from rats encapsulated in the device and implanted in diabetic mice restored normoglycaemia in the mice for over 75 days. The biocompatible device provides a retrievable solution for the transplantation of engineered cells in the absence of immunosuppression.


Asunto(s)
Trasplante de Células/métodos , Supervivencia de Injerto , Prótesis e Implantes , Animales , Cápsulas , Trasplante de Células/instrumentación , Materiales Biocompatibles Revestidos , Diabetes Mellitus Experimental/terapia , Diseño de Equipo , Eritropoyetina/genética , Eritropoyetina/metabolismo , Reacción a Cuerpo Extraño/prevención & control , Células HEK293 , Humanos , Islotes Pancreáticos , Trasplante de Islotes Pancreáticos/instrumentación , Trasplante de Islotes Pancreáticos/métodos , Ratones , Permeabilidad , Ratas , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...