Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 8(1): 364, 2017 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-28848237

RESUMEN

The control of mass transport using porous fibers is ubiquitous, with applications ranging from filtration to catalysis. Yet, to date, porous fibers have been made of single materials in simple geometries, with limited function. Here we report the fabrication and characterization of thermally drawn multimaterial fibers encompassing internal porous domains alongside non-porous insulating and conductive materials, in highly controlled device geometries. Our approach utilizes phase separation of a polymer solution during the preform-to-fiber drawing process, generating porosity as the fiber is drawn. Engineering the preform structure grants control over the geometry and materials architecture of the final porous fibers. Electrical conductivity of the selectrolyte-filled porous domains is substantiated through ionic conductivity measurements using electrodes thermally drawn in the cross-section. Pore size tunability between 500 nm-10 µm is established by regulating the phase separation kinetics. We further demonstrate capillary breakup of cylindrical porous structures porous microspheres within the fiber core.Porous polymer fibers show great potential for a range of applications, but their simple structures typically limit their functionality. Here, the authors combine a thermal drawing process with polymer solution phase separation to fabricate porous multimaterial fibers with complex internal architectures.

2.
ACS Nano ; 11(7): 6574-6585, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28570813

RESUMEN

Microelectrodes provide a direct pathway to investigate brain activities electrically from the external world, which has advanced our fundamental understanding of brain functions and has been utilized for rehabilitative applications as brain-machine interfaces. However, minimizing the tissue response and prolonging the functional durations of these devices remain challenging. Therefore, the development of next-generation microelectrodes as neural interfaces is actively progressing from traditional inorganic materials toward biocompatible and functional organic materials with a miniature footprint, good flexibility, and reasonable robustness. In this study, we developed a miniaturized all polymer-based neural probe with carbon nanofiber (CNF) composites as recording electrodes via the scalable thermal drawing process. We demonstrated that in situ CNF unidirectional alignment can be achieved during the thermal drawing, which contributes to a drastic improvement of electrical conductivity by 2 orders of magnitude compared to a conventional polymer electrode, while still maintaining the mechanical compliance with brain tissues. The resulting neural probe has a miniature footprint, including a recording site with a reduced size comparable to a single neuron and maintained impedance that was able to capture neural activities. Its stable functionality as a chronic implant has been demonstrated with the long-term reliable electrophysiological recording with single-spike resolution and the minimal tissue response over the extended period of implantation in wild-type mice. Technology developed here can be applied to basic chronic electrophysiological studies as well as clinical implementation for neuro-rehabilitative applications.

3.
Proc Natl Acad Sci U S A ; 114(28): 7240-7245, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28642348

RESUMEN

Crystallization of microdroplets of molten alloys could, in principle, present a number of possible morphological outcomes, depending on the symmetry of the propagating solidification front and its velocity, such as axial or spherically symmetric species segregation. However, because of thermal or constitutional supercooling, resulting droplets often only display dendritic morphologies. Here we report on the crystallization of alloyed droplets of controlled micrometer dimensions comprising silicon and germanium, leading to a number of surprising outcomes. We first produce an array of silicon-germanium particles embedded in silica, through capillary breakup of an alloy-core silica-cladding fiber. Heating and subsequent controlled cooling of individual particles with a two-wavelength laser setup allows us to realize two different morphologies, the first being a silicon-germanium compositionally segregated Janus particle oriented with respect to the illumination axis and the second being a sphere made of dendrites of germanium in silicon. Gigapascal-level compressive stresses are measured within pure silicon solidified in silica as a direct consequence of volume-constrained solidification of a material undergoing anomalous expansion. The ability to generate microspheres with controlled morphology and unusual stresses could pave the way toward advanced integrated in-fiber electronic or optoelectronic devices.

4.
Nat Neurosci ; 20(4): 612-619, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28218915

RESUMEN

Optogenetic interrogation of neural pathways relies on delivery of light-sensitive opsins into tissue and subsequent optical illumination and electrical recording from the regions of interest. Despite the recent development of multifunctional neural probes, integration of these modalities in a single biocompatible platform remains a challenge. We developed a device composed of an optical waveguide, six electrodes and two microfluidic channels produced via fiber drawing. Our probes facilitated injections of viral vectors carrying opsin genes while providing collocated neural recording and optical stimulation. The miniature (<200 µm) footprint and modest weight (<0.5 g) of these probes allowed for multiple implantations into the mouse brain, which enabled opto-electrophysiological investigation of projections from the basolateral amygdala to the medial prefrontal cortex and ventral hippocampus during behavioral experiments. Fabricated solely from polymers and polymer composites, these flexible probes minimized tissue response to achieve chronic multimodal interrogation of brain circuits with high fidelity.


Asunto(s)
Electrodos Implantados , Hipocampo/fisiología , Neuronas/fisiología , Fibras Ópticas , Optogenética/instrumentación , Polímeros , Animales , Complejo Nuclear Basolateral/fisiología , Encéfalo/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Channelrhodopsins , Potenciales Evocados/fisiología , Masculino , Ratones , Ratones Transgénicos , Actividad Motora/fisiología , Vías Nerviosas/fisiología , Opsinas/genética , Estimulación Luminosa , Corteza Prefrontal/fisiología
5.
Nat Commun ; 4: 2216, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23900398

RESUMEN

The ability to produce small scale, crystalline silicon spheres is of significant technological and scientific importance, yet scalable methods for doing so have remained elusive. Here we demonstrate a silicon nanosphere fabrication process based on an optical fibre drawing technique. A silica-cladded silicon-core fibre with diameters down to 340 nm is continuously fed into a flame defining an axial thermal gradient and the continuous formation of spheres whose size is controlled by the feed speed is demonstrated. In particular, spheres of diameter <500 nm smaller than those produced under isothermal heating conditions are shown and analysed. A fibre with dual cores, p-type and n-type silicon, is drawn and processed into spheres. Spatially coherent break-up leads to the joining of the spheres into a bispherical silicon 'p-n molecule'. The resulting device is measured to reveal a rectifying I-V curve consistent with the formation of a p-n junction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...