Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 10907, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616773

RESUMEN

Volcanic degassing of planetary interiors has important implications for their corresponding atmospheres. The oxidation state of rocky interiors affects the volatile partitioning during mantle melting and subsequent volatile speciation near the surface. Here we show that the mantle redox state is central to the chemical composition of atmospheres while factors such as planetary mass, thermal state, and age mainly affect the degassing rate. We further demonstrate that mantle oxygen fugacity has an effect on atmospheric thickness and that volcanic degassing is most efficient for planets between 2 and 4 Earth masses. We show that outgassing of reduced systems is dominated by strongly reduced gases such as [Formula: see text], with only smaller fractions of moderately reduced/oxidised gases ([Formula: see text], [Formula: see text]). Overall, a reducing scenario leads to a lower atmospheric pressure at the surface and to a larger atmospheric thickness compared to an oxidised system. Atmosphere predictions based on interior redox scenarios can be compared to observations of atmospheres of rocky exoplanets, potentially broadening our knowledge on the diversity of exoplanetary redox states.

2.
Astrobiology ; 19(6): 797-810, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30985192

RESUMEN

We tested the ability of thermal infrared spectroscopy to retrieve assumed atmospheric compositions for different types of planets orbiting Proxima Centauri and Epsilon Eridani. Six cases are considered, covering a range of atmospheric compositions and some diversity in the bulk composition (rocky, water ocean, hydrogen rich) and the spectral type of the parent star (M and K stars). For some cases, we applied coupled climate chemistry, or climate-only calculations; for other cases, we assumed the atmospheric composition, ground temperature, and surface reflectivity. The IR emission was then calculated from line-by-line radiative transfer models and used to investigate retrieval of input atmospheric species. For the six cases considered, no false positive of the triple bioindicator (H2O, CO2, and O2, in specified conditions) was found. In some cases, results show that the simultaneous acquisition of a visible spectrum would be valuable, for example, when CO2 is very abundant and its 9.4 µm satellite band hides the 9.6 µm O3 band in the IR. In each case, determining the mass appears mandatory to identify the planet's nature and have an idea of surface conditions, which are necessary when testing for the presence of life.


Asunto(s)
Atmósfera/análisis , Biomarcadores Ambientales , Medio Ambiente Extraterrestre/química , Gases/análisis , Planetas , Clima , Exobiología/métodos , Gases/química , Espectrofotometría Infrarroja , Estrellas Celestiales , Temperatura
3.
Astrobiology ; 18(7): 856-872, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30035637

RESUMEN

Earth-like planets orbiting M dwarfs are prominent targets when searching for life outside the Solar System. We apply our Coupled Atmosphere Biogeochemical model to investigate the coupling between the biosphere, geosphere, and atmosphere in order to gain insight into the atmospheric evolution of Earth-like planets orbiting M dwarfs and to understand the processes affecting biosignatures and climate on such worlds. This is the first study applying an automated chemical pathway analysis quantifying the production and destruction pathways of molecular oxygen (O2) for an Earth-like planet with an Archean O2 concentration orbiting in the habitable zone of the M dwarf star AD Leonis, which we take as a type-case of an active M dwarf. The main production arises in the upper atmosphere from carbon dioxide photolysis followed by catalytic hydrogen oxide radical (HOx) reactions. The strongest destruction does not take place in the troposphere, as was the case in Gebauer et al. ( 2017 ) for an early Earth analog planet around the Sun, but instead in the middle atmosphere where water photolysis is the strongest. Results further suggest that these atmospheres are in absolute terms less destructive for O2 than for early Earth analog planets around the Sun despite higher concentrations of reduced gases such as molecular hydrogen, methane, and carbon monoxide. Hence smaller amounts of net primary productivity are required to oxygenate the atmosphere due to a change in the atmospheric oxidative capacity, driven by the input stellar spectrum resulting in shifts in the intrafamily HOx partitioning. Under the assumption that an atmosphere of an Earth-like planet survived and evolved during the early high-activity phase of an M dwarf to an Archean-type composition, a possible "Great Oxidation Event," analogous to that on Early Earth, would have occurred earlier in time after the atmospheric composition was reached, assuming the same atmospheric O2 sources and sinks as on early Earth. Key Words: Earth-like-Oxygen-M dwarf stars-Atmosphere-Biogeochemistry-Photochemistry-Biosignatures-Earth-like planets. Astrobiology 18, 856-872.


Asunto(s)
Atmósfera/análisis , Evolución Planetaria , Exobiología/métodos , Estrellas Celestiales , Atmósfera/química , Medio Ambiente Extraterrestre/química , Modelos Químicos , Oxígeno/análisis , Oxígeno/química
4.
Astrobiology ; 17(1): 27-54, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28103105

RESUMEN

Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that masks its biosphere over a wide range of conditions). Key Words: Early Earth-Proterozoic-Archean-Oxygen-Atmosphere-Biogeochemistry-Photochemistry-Biosignatures-Earth-like planets. Astrobiology 16, 27-54.


Asunto(s)
Atmósfera , Planeta Tierra , Evolución Planetaria , Exobiología , Medio Ambiente Extraterrestre , Modelos Teóricos , Altitud , Dióxido de Carbono/análisis , Metano/análisis , Óxido Nitroso/análisis , Ozono/química , Reproducibilidad de los Resultados , Propiedades de Superficie , Temperatura , Agua/química
5.
Astrobiology ; 13(5): 415-38, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23683046

RESUMEN

Spectral characterization of super-Earth atmospheres for planets orbiting in the habitable zone of M dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of 1 bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by in an earlier work by Rauer and colleagues. The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex life. An important result of our analysis is a shift in the ozone photochemistry from mainly Chapman production (which dominates in Earth's stratosphere) to smog-dominated ozone production for planets in the habitable zone of cooler (M5-M7)-class dwarf stars. This result is associated with a lower energy flux in the UVB wavelength range from the central star, hence slower planetary atmospheric photolysis of molecular oxygen, which slows the Chapman ozone production. This is important for future atmospheric characterization missions because it provides an indication of different chemical environments that can lead to very different responses of ozone, for example, cosmic rays. Nitrous oxide, a biosignature for simple bacterial life, is favored for low stratospheric UV conditions, that is, on planets orbiting cooler stars. Transport of this species from its surface source to the stratosphere where it is destroyed can also be a key process. Comparing 1g with 3g scenarios, our analysis suggests it is important to include the effects of interactive chemistry.


Asunto(s)
Atmósfera , Planeta Tierra , Procesos Fotoquímicos , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA