Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Histochem ; 125(2): 152001, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36669254

RESUMEN

Cerebellum is devoted to motor coordination and cognitive functions. Endoplasmic reticulum is the largest intracellular calcium store involved in all neuronal functions. Intralumenal calcium binding proteins play a pivotal role in calcium storage and contribute to both calcium release and uptake. Calsequestrin, a key calcium binding protein of sarco-endoplasmic reticulum in skeletal and cardiac muscles, was identified in chicken and fish cerebellum Purkinje cells, but its expression in mammals and human counterpart has not been studied in depth. Aim of the present paper was to investigate expression and localization of Calsequestrin in mammalian cerebellum. Calsequestrin was found to be expressed at low level in cerebellum, but specifically concentrated in Calbindin D28- and zebrin- immunopositive-Purkinje cells. Two additional fundamental calcium store markers, sarco-endoplasmic calcium pump isoform 2, SERCA2, and Inositol-trisphosphate receptor isoform 1, IP3R1, were found to be co-expressed in the region, with some localization peculiarities. In conclusion, a new marker was identified for Purkinje cells in adult mammals, including humans. Such a marker might help in staminal neuronal cells specification and in dissection of still unknown neurodegeneration and physio-pathological effects of dysregulated calcium homeostasis.


Asunto(s)
Calsecuestrina , Células de Purkinje , Animales , Humanos , Células de Purkinje/metabolismo , Calsecuestrina/metabolismo , Calcio/metabolismo , Cerebelo/metabolismo , Proteínas de Unión al Calcio , Mamíferos/metabolismo
2.
Basic Res Cardiol ; 118(1): 4, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670288

RESUMEN

During embryonic development, cardiomyocytes undergo differentiation and maturation, processes that are tightly regulated by tissue-specific signaling cascades. Although redox signaling pathways involved in cardiomyogenesis are established, the exact sources responsible for reactive oxygen species (ROS) formation remain elusive. The present study investigates whether ROS produced by the mitochondrial flavoenzyme monoamine oxidase A (MAO-A) play a role in cardiomyocyte differentiation from human induced pluripotent stem cells (hiPSCs). Wild type (WT) and MAO-A knock out (KO) hiPSCs were generated by CRISPR/Cas9 genome editing and subjected to cardiomyocyte differentiation. Mitochondrial ROS levels were lower in MAO-A KO compared to the WT cells throughout the differentiation process. MAO-A KO hiPSC-derived cardiomyocytes (hiPSC-CMs) displayed sarcomere disarray, reduced α- to ß-myosin heavy chain ratio, GATA4 upregulation and lower macroautophagy levels. Functionally, genetic ablation of MAO-A negatively affected intracellular Ca2+ homeostasis in hiPSC-CMs. Mechanistically, MAO-A generated ROS contributed to the activation of AKT signaling that was considerably attenuated in KO cells. In addition, MAO-A ablation caused a reduction in WNT pathway gene expression consistent with its reported stimulation by ROS. As a result of WNT downregulation, expression of MESP1 and NKX2.5 was significantly decreased in MAO-A KO cells. Finally, MAO-A re-expression during differentiation rescued expression levels of cardiac transcription factors, contractile structure, and intracellular Ca2+ homeostasis. Taken together, these results suggest that MAO-A mediated ROS generation is necessary for the activation of AKT and WNT signaling pathways during cardiac lineage commitment and for the differentiation of fully functional human cardiomyocytes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Diferenciación Celular/fisiología , Vía de Señalización Wnt
3.
Biomedicines ; 10(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36551781

RESUMEN

Alzheimer's disease (AD) is a hereditary and sporadic neurodegenerative illness defined by the gradual and cumulative loss of neurons in specific brain areas. The processes that cause AD are still under investigation and there are no available therapies to halt it. Current progress puts at the forefront the "calcium (Ca2+) hypothesis" as a key AD pathogenic pathway, impacting neuronal, astrocyte and microglial function. In this review, we focused on mitochondrial Ca2+ alterations in AD, their causes and bioenergetic consequences in neuronal and glial cells, summarizing the possible mechanisms linking detrimental mitochondrial Ca2+ signals to neuronal death in different experimental AD models.

4.
Antioxidants (Basel) ; 12(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36670904

RESUMEN

Cancer utilization of large glutamine equivalents contributes to diverging glucose-6-P flux toward the pentose phosphate shunt (PPP) to feed the building blocks and the antioxidant responses of rapidly proliferating cells. In addition to the well-acknowledged cytosolic pathway, cancer cells also run a largely independent PPP, triggered by hexose-6P-dehydrogenase within the endoplasmic reticulum (ER), whose activity is mandatory for the integrity of ER-mitochondria networking. To verify whether this reticular metabolism is dependent on glutamine levels, we complemented the metabolomic characterization of intermediates of the glucose metabolism and tricarboxylic acid cycle with the estimation of proliferating activity, energy metabolism, redox damage, and mitochondrial function in two breast cancer cell lines. ER-PPP activity and its determinants were estimated by the ER accumulation of glucose analogs. Glutamine shortage decreased the proliferation rate despite increased ATP and NADH levels. It depleted NADPH reductive power and increased malondialdehyde content despite a marked increase in glucose-6P-dehydrogenase. This paradox was explained by the deceleration of ER-PPP favored by the decrease in hexose-6P-dehydrogenase expression coupled with the opposite response of its competitor enzyme glucose-6P-phosphatase. The decreased ER-PPP activity eventually hampered mitochondrial function and calcium exchanges. These data configure the ER-PPP as a powerful, unrecognized regulator of cancer cell metabolism and proliferation.

5.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576104

RESUMEN

Calcium (Ca2+) exerts a pivotal role in controlling both physiological and detrimental cellular processes. This versatility is due to the existence of a cell-specific molecular Ca2+ toolkit and its fine subcellular compartmentalization. Study of the role of Ca2+ in cellular physiopathology greatly benefits from tools capable of quantitatively measuring its dynamic concentration ([Ca2+]) simultaneously within organelles and in the cytosol to correlate localized and global [Ca2+] changes. To this aim, as nucleoplasm Ca2+ changes mirror those of the cytosol, we generated a novel nuclear-targeted version of a Föster resonance energy transfer (FRET)-based Ca2+ probe. In particular, we modified the previously described nuclear Ca2+ sensor, H2BD3cpv, by substituting the donor ECFP with mCerulean3, a brighter and more photostable fluorescent protein. The thorough characterization of this sensor in HeLa cells demonstrated that it significantly improved the brightness and photostability compared to the original probe, thus obtaining a probe suitable for more accurate quantitative Ca2+ measurements. The affinity for Ca2+ was determined in situ. Finally, we successfully applied the new probe to confirm that cytoplasmic and nucleoplasmic Ca2+ levels were similar in both resting conditions and upon cell stimulation. Examples of simultaneous monitoring of Ca2+ signal dynamics in different subcellular compartments in the very same cells are also presented.


Asunto(s)
Calcio/metabolismo , Núcleo Celular/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Fenómenos Biofísicos , Señalización del Calcio , Citosol/metabolismo , Células HeLa , Humanos , Cinética
6.
BMC Biol ; 19(1): 57, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33761951

RESUMEN

BACKGROUND: Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential. RESULTS: Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased mitochondrial calcium (Ca2+) and Ca2+-dependent pyruvate dehydrogenase activity. This signaling pathway likely contributed to the observed effect of luteolin on enhanced mitochondrial complexes I and II activities. Importantly, we observed that increased mitochondrial functions were dependent on the activity of ER Ca2+-releasing channels inositol 1,4,5-trisphosphate receptors (IP3Rs) both in neurons and in isolated synaptosomes. Additionally, luteolin treatment improved mitochondrial and locomotory activities in primary neurons and Caenorhabditis elegans expressing an expanded polyglutamine tract of the huntingtin protein. CONCLUSION: We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with potential therapeutic validity for treatment of a variety of human diseases.


Asunto(s)
Retículo Endoplásmico/efectos de los fármacos , Luteolina/farmacología , Mitocondrias/efectos de los fármacos , Neuronas/metabolismo , Animales , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Retículo Endoplásmico/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Transducción de Señal
7.
Cells ; 10(2)2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494218

RESUMEN

Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder in which learning, memory and cognitive functions decline progressively. Familial forms of AD (FAD) are caused by mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes. Presenilin 1 (PS1) and its homologue, presenilin 2 (PS2), represent, alternatively, the catalytic core of the γ-secretase complex that, by cleaving APP, produces neurotoxic amyloid beta (Aß) peptides responsible for one of the histopathological hallmarks in AD brains, the amyloid plaques. Recently, PSEN1 FAD mutations have been associated with a loss-of-function phenotype. To investigate whether this finding can also be extended to PSEN2 FAD mutations, we studied two processes known to be modulated by PS2 and altered by FAD mutations: Ca2+ signaling and mitochondrial function. By exploiting neurons derived from a PSEN2 knock-out (PS2-/-) mouse model, we found that, upon IP3-generating stimulation, cytosolic Ca2+ handling is not altered, compared to wild-type cells, while mitochondrial Ca2+ uptake is strongly compromised. Accordingly, PS2-/- neurons show a marked reduction in endoplasmic reticulum-mitochondria apposition and a slight alteration in mitochondrial respiration, whereas mitochondrial membrane potential, and organelle morphology and number appear unchanged. Thus, although some alterations in mitochondrial function appear to be shared between PS2-/- and FAD-PS2-expressing neurons, the mechanisms leading to these defects are quite distinct between the two models. Taken together, our data appear to be difficult to reconcile with the proposal that FAD-PS2 mutants are loss-of-function, whereas the concept that PS2 plays a key role in sustaining mitochondrial function is here confirmed.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Señalización del Calcio , Mitocondrias/metabolismo , Presenilina-2/deficiencia , Adenosina Trifosfato/biosíntesis , Animales , Respiración de la Célula , Ciclo del Ácido Cítrico , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Glucólisis , Potencial de la Membrana Mitocondrial , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Fosforilación Oxidativa , Fenotipo , Presenilina-2/metabolismo
8.
Aging Clin Exp Res ; 33(6): 1705-1708, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31606858

RESUMEN

Alzheimer's disease (AD) is the most frequent cause of dementia in the elderly. Few cases are familial (FAD), due to autosomal dominant mutations in presenilin-1 (PS1), presenilin-2 (PS2) or amyloid precursor protein (APP). The three proteins are involved in the generation of amyloid-beta (Aß) peptides, providing genetic support to the hypothesis of Aß pathogenicity. However, clinical trials focused on the Aß pathway failed in their attempt to modify disease progression, suggesting the existence of additional pathogenic mechanisms. Ca2+ dysregulation is a feature of cerebral aging, with an increased frequency and anticipated age of onset in several forms of neurodegeneration, including AD. Interestingly, FAD-linked PS1 and PS2 mutants alter multiple key cellular pathways, including Ca2+ signaling. By generating novel tools for measuring Ca2+ in living cells, and combining different approaches, we showed that FAD-linked PS2 mutants significantly alter cell Ca2+ signaling and brain network activity, as summarized below.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Homeostasis , Humanos , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo
9.
Function (Oxf) ; 2(3): zqab012, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35330679

RESUMEN

Mitochondria play a key role in cellular calcium (Ca2+) homeostasis. Dysfunction in the organelle Ca2+ handling appears to be involved in several pathological conditions, ranging from neurodegenerative diseases, cardiac failure and malignant transformation. In the past years, several targeted green fluorescent protein (GFP)-based genetically encoded Ca2+ indicators (GECIs) have been developed to study Ca2+ dynamics inside mitochondria of living cells. Surprisingly, while there is a number of transgenic mice expressing different types of cytosolic GECIs, few examples are available expressing mitochondria-localized GECIs, and none of them exhibits adequate spatial resolution. Here we report the generation and characterization of a transgenic mouse line (hereafter called mt-Cam) for the controlled expression of a mitochondria-targeted, Förster resonance energy transfer (FRET)-based Cameleon, 4mtD3cpv. To achieve this goal, we engineered the mouse ROSA26 genomic locus by inserting the optimized sequence of 4mtD3cpv, preceded by a loxP-STOP-loxP sequence. The probe can be readily expressed in a tissue-specific manner upon Cre recombinase-mediated excision, obtainable with a single cross. Upon ubiquitous Cre expression, the Cameleon is specifically localized in the mitochondrial matrix of cells in all the organs and tissues analyzed, from embryos to aged animals. Ca2+ imaging experiments performed in vitro and ex vivo in brain slices confirmed the functionality of the probe in isolated cells and live tissues. This new transgenic mouse line allows the study of mitochondrial Ca2+ dynamics in different tissues with no invasive intervention (such as viral infection or electroporation), potentially allowing simple calibration of the fluorescent signals in terms of mitochondrial Ca2+ concentration ([Ca2+]).


Asunto(s)
Mitocondrias , Orgánulos , Ratones , Animales , Ratones Transgénicos , Mitocondrias/genética , Proteínas Fluorescentes Verdes/genética , Orgánulos/metabolismo , Señalización del Calcio , Calcio de la Dieta/metabolismo
10.
Cell Calcium ; 93: 102321, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33310302

RESUMEN

Mitochondria are autonomous and dynamic cellular organelles orchestrating a diverse range of cellular activities. Numerous cell-signaling pathways target these organelles and Ca2+ is one of the most significant. Mitochondria are able to rapidly and transiently take up Ca2+, thanks to the mitochondrial Ca2+ uniporter complex, as well as to extrude it through the Na+/Ca2+ and H+/Ca2+ exchangers. The transient accumulation of Ca2+ in the mitochondrial matrix impacts on mitochondrial functions and cell pathophysiology. Here we summarize the role of mitochondrial Ca2+ signaling in both physiological (yang) and pathological (yin) processes and the methods that can be used to investigate mitochondrial Ca2+ homeostasis. As an example of the pivotal role of mitochondria in pathology, we described the state of the art of mitochondrial Ca2+ alterations in different pathological conditions, with a special focus on Alzheimer's disease.


Asunto(s)
Señalización del Calcio , Células/metabolismo , Células/patología , Mitocondrias/metabolismo , Yin-Yang , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Homeostasis , Humanos
11.
Cells ; 9(10)2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992716

RESUMEN

Presenilin-2 (PS2) is one of the three proteins that are dominantly mutated in familial Alzheimer's disease (FAD). It forms the catalytic core of the γ-secretase complex-a function shared with its homolog presenilin-1 (PS1)-the enzyme ultimately responsible of amyloid-ß (Aß) formation. Besides its enzymatic activity, PS2 is a multifunctional protein, being specifically involved, independently of γ-secretase activity, in the modulation of several cellular processes, such as Ca2+ signalling, mitochondrial function, inter-organelle communication, and autophagy. As for the former, evidence has accumulated that supports the involvement of PS2 at different levels, ranging from organelle Ca2+ handling to Ca2+ entry through plasma membrane channels. Thus FAD-linked PS2 mutations impact on multiple aspects of cell and tissue physiology, including bioenergetics and brain network excitability. In this contribution, we summarize the main findings on PS2, primarily as a modulator of Ca2+ homeostasis, with particular emphasis on the role of its mutations in the pathogenesis of FAD. Identification of cell pathways and molecules that are specifically targeted by PS2 mutants, as well as of common targets shared with PS1 mutants, will be fundamental to disentangle the complexity of memory loss and brain degeneration that occurs in Alzheimer's disease (AD).


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Presenilina-1/genética , Presenilina-2/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Encéfalo/patología , Calcio/metabolismo , Señalización del Calcio/genética , Membrana Celular/genética , Flavina-Adenina Dinucleótido/genética , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Mutantes/genética , Presenilina-2/metabolismo
12.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722509

RESUMEN

Senile plaques, the hallmarks of Alzheimer's Disease (AD), are generated by the deposition of amyloid-beta (Aß), the proteolytic product of amyloid precursor protein (APP), by ß and γ-secretase. A large body of evidence points towards a role for Ca2+ imbalances in the pathophysiology of both sporadic and familial forms of AD (FAD). A reduction in store-operated Ca2+ entry (SOCE) is shared by numerous FAD-linked mutations, and SOCE is involved in Aß accumulation in different model cells. In neurons, both the role and components of SOCE remain quite obscure, whereas in astrocytes, SOCE controls their Ca2+-based excitability and communication to neurons. Glial cells are also directly involved in Aß production and clearance. Here, we focus on the role of ORAI2, a key SOCE component, in modulating SOCE in the human neuroglioma cell line H4. We show that ORAI2 overexpression reduces both SOCE level and stores Ca2+ content, while ORAI2 downregulation significantly increases SOCE amplitude without affecting store Ca2+ handling. In Aß-secreting H4-APPswe cells, SOCE inhibition by BTP2 and SOCE augmentation by ORAI2 downregulation respectively increases and decreases Aß42 accumulation. Based on these findings, we suggest ORAI2 downregulation as a potential tool to rescue defective SOCE in AD, while preventing plaque formation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Señalización del Calcio , Neuronas/metabolismo , Proteína ORAI2/metabolismo , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/patología , Células HEK293 , Células HeLa , Humanos , Neuronas/patología
13.
Methods Cell Biol ; 155: 337-368, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32183967

RESUMEN

Calcium (Ca2+) is a universal intracellular messenger capable of governing a plethora of different biological functions. Its versatility is guaranteed on the one hand by a cell type-specific Ca2+ signaling toolkit. On the other hand, the fine compartmentalization of changes in Ca2+ concentration ([Ca2+]) into specific subcellular domains adds a level of complexity, thus generating a variety of signals that can be differentially decoded into specific cellular events. In this context, mitochondrial Ca2+ dynamics plays a central role, by regulating both specific organelle functions (e.g., regulation of substrate oxidation, release of caspase cofactors) and global cellular events (e.g., shaping of cytoplasmic Ca2+ waves). Here we describe a general method for the detection of intramitochondrial [Ca2+] using bioluminescent and fluorescent genetically-encoded Ca2+ indicators (GECIs). We will discuss the characteristics of different GECIs, as well as their strengths, limitations and applications.


Asunto(s)
Técnicas Biosensibles/métodos , Calcio/análisis , Aequorina/metabolismo , Señalización del Calcio , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Mediciones Luminiscentes
14.
Int J Mol Sci ; 21(3)2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31991578

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia. Even though most AD cases are sporadic, a small percentage is familial due to autosomal dominant mutations in amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) genes. AD mutations contribute to the generation of toxic amyloid ß (Aß) peptides and the formation of cerebral plaques, leading to the formulation of the amyloid cascade hypothesis for AD pathogenesis. Many drugs have been developed to inhibit this pathway but all these approaches currently failed, raising the need to find additional pathogenic mechanisms. Alterations in cellular calcium (Ca2+) signaling have also been reported as causative of neurodegeneration. Interestingly, Aß peptides, mutated presenilin-1 (PS1), and presenilin-2 (PS2) variously lead to modifications in Ca2+ homeostasis. In this contribution, we focus on PS2, summarizing how AD-linked PS2 mutants alter multiple Ca2+ pathways and the functional consequences of this Ca2+ dysregulation in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Señalización del Calcio , Presenilina-2/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/genética
15.
Bio Protoc ; 10(3): e3504, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33654731

RESUMEN

Calcium (Ca2+) imaging aims at investigating the dynamic changes in live cells of its concentration ([Ca2+]) in different pathophysiological conditions. Ca2+ is an ubiquitous and versatile intracellular signal that modulates a large variety of cellular functions thanks to a cell type-specific toolkit and a complex subcellular compartmentalization. Many Ca2+ sensors are presently available (chemical and genetically encoded) that can be specifically targeted to different cellular compartments. Using these probes, it is now possible to monitor Ca2+ dynamics of living cells not only in the cytosol but also within specific organelles. The choice of a specific sensor depends on the experimental design and the spatial and temporal resolution required. Here we describe the use of novel Förster resonance energy transfer (FRET)-based fluorescent Ca2+ probes to dynamically and quantitatively monitor the changes in cytosolic and mitochondrial [Ca2+] in a variety of cell types and experimental conditions. FRET-based sensors have the enormous advantage of being ratiometric, a feature that makes them particularly suitable for quantitative and in vivo applications.

17.
iScience ; 16: 340-355, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31203189

RESUMEN

Genetically Encoded Ca2+ Indicators (GECIs) are extensively used to study organelle Ca2+ homeostasis, although some available probes are still plagued by a number of problems, e.g., low fluorescence intensity, partial mistargeting, and pH sensitivity. Furthermore, in the most commonly used mitochondrial Förster Resonance Energy Transfer based-GECIs, the donor protein ECFP is characterized by a double exponential lifetime that complicates the fluorescence lifetime analysis. We have modified the cytosolic and mitochondria-targeted Cameleon GECIs by (1) substituting the donor ECFP with mCerulean3, a brighter and more stable fluorescent protein with a single exponential lifetime; (2) extensively modifying the constructs to improve targeting efficiency and fluorescence changes caused by Ca2+ binding; and (3) inserting the cDNAs into adeno-associated viral vectors for in vivo expression. The probes have been thoroughly characterized in situ by fluorescence microscopy and Fluorescence Lifetime Imaging Microscopy, and examples of their ex vivo and in vivo applications are described.

18.
Cell Calcium ; 79: 44-56, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30822648

RESUMEN

An imbalance in Ca2+ homeostasis represents an early event in the pathogenesis of Alzheimer's disease (AD). Presenilin-1 and -2 (PS1 and PS2) mutations, the major cause of familial AD (FAD), have been extensively associated with alterations in different Ca2+ signaling pathways, in particular those handled by storage compartments. However, FAD-PSs effect on organelles Ca2+ content is still debated and the mechanism of action of mutant proteins is unclear. To fulfil the need of a direct investigation of intracellular stores Ca2+ dynamics, we here present a detailed and quantitative single-cell analysis of FAD-PSs effects on organelle Ca2+ handling using specifically targeted, FRET (Fluorescence/Förster Resonance Energy Transfer)-based Ca2+ indicators. In SH-SY5Y human neuroblastoma cells and in patient-derived fibroblasts expressing different FAD-PSs mutations, we directly measured Ca2+ concentration within the main intracellular Ca2+ stores, e.g., Endoplasmic Reticulum (ER) and Golgi Apparatus (GA) medial- and trans-compartment. We unambiguously demonstrate that the expression of FAD-PS2 mutants, but not FAD-PS1, in either SH-SY5Y cells or FAD patient-derived fibroblasts, is able to alter Ca2+ handling of ER and medial-GA, but not trans-GA, reducing, compared to control cells, the Ca2+ content within these organelles by partially blocking SERCA (Sarco/Endoplasmic Reticulum Ca2+-ATPase) activity. Moreover, by using a cytosolic Ca2+ probe, we show that the expression of both FAD-PS1 and -PS2 reduces the Ca2+ influx activated by stores depletion (Store-Operated Ca2+ Entry; SOCE), by decreasing the expression levels of one of the key molecules, STIM1 (STromal Interaction Molecule 1), controlling this pathway. Our data indicate that FAD-linked PSs mutants differentially modulate the Ca2+ content of intracellular stores yet leading to a complex dysregulation of Ca2+ homeostasis, which represents a common disease phenotype of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Calcio/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Orgánulos/metabolismo , Presenilina-1/genética , Presenilina-2/genética , Calcio/análisis , Humanos , Mutación , Presenilina-1/metabolismo , Presenilina-2/metabolismo , Células Tumorales Cultivadas
19.
Methods Mol Biol ; 1925: 15-30, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30674013

RESUMEN

Calcium ion (Ca2+) is a ubiquitous intracellular messenger able to generate versatile intracellular signals that modulate a large variety of functions in virtually every cell type. Chemical and genetic biosensors, targeted to different subcellular compartments, have been developed and continuously improved to monitor Ca2+ dynamics in living cells. Here we describe the usage of Förster resonance energy transfer (FRET)-based Cameleon probes to investigate Ca2+ influx across the plasma membrane (PM) or Ca2+ release from the main intracellular Ca2+ store, the endoplasmic reticulum (ER).


Asunto(s)
Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/metabolismo , Proteínas Bacterianas/química , Calcio/análisis , Señalización del Calcio , Cationes Bivalentes/análisis , Cationes Bivalentes/metabolismo , Línea Celular , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/química , Células HeLa , Humanos , Proteínas Luminiscentes/química , Imagen Óptica/métodos , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Conformación Proteica
20.
Sci Rep ; 8(1): 17143, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30464185

RESUMEN

The Golgi apparatus (GA) is a bona fide Ca2+ store; however, there is a lack of GA-specific Ca2+ mobilizing agents. Here, we report that emetine specifically releases Ca2+ from GA in HeLa and HL-1 atrial myocytes. Additionally, it has become evident that the trans-Golgi is a labile Ca2+ store that requires a continuous source of Ca2+ from either the external milieu or from the ER, to enable it to produce a detectable transient increase in cytosolic Ca2+. Our data indicates that the emetine-sensitive Ca2+ mobilizing mechanism is different from the two classical Ca2+ release mechanisms, i.e. IP3 and ryanodine receptors. This newly discovered ability of emetine to release Ca2+ from the GA may explain why chronic consumption of ipecac syrup has muscle side effects.


Asunto(s)
Antinematodos/farmacología , Calcio/metabolismo , Emetina/farmacología , Células Epiteliales/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Red trans-Golgi/efectos de los fármacos , Línea Celular , Células Epiteliales/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Red trans-Golgi/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...