Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 44(9): 1380-95, 2001 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-11311061

RESUMEN

The synthesis, in vitro activities, and pharmacokinetics of a series of azepanone-based inhibitors of the cysteine protease cathepsin K (EC 3.4.22.38) are described. These compounds show improved configurational stability of the C-4 diastereomeric center relative to the previously published five- and six-membered ring ketone-based inhibitor series. Studies in this series have led to the identification of 20, a potent, selective inhibitor of human cathepsin K (K(i) = 0.16 nM) as well as 24, a potent inhibitor of both human (K(i) = 0.0048 nM) and rat (K(i,app) = 4.8 nM) cathepsin K. Small-molecule X-ray crystallographic analysis of 20 established the C-4 S stereochemistry as being critical for potent inhibition and that unbound 20 adopted the expected equatorial conformation for the C-4 substituent. Molecular modeling studies predicted the higher energy axial orientation at C-4 of 20 when bound within the active site of cathepsin K, a feature subsequently confirmed by X-ray crystallography. Pharmacokinetic studies in the rat show 20 to be 42% orally bioavailable. Comparison of the transport of the cyclic and acyclic analogues through CaCo-2 cells suggests that oral bioavailability of the acyclic derivatives is limited by a P-glycoprotein-mediated efflux mechanism. It is concluded that the introduction of a conformational constraint has served the dual purpose of increasing inhibitor potency by locking in a bioactive conformation as well as locking out available conformations which may serve as substrates for enzyme systems that limit oral bioavailability.


Asunto(s)
Azepinas/síntesis química , Catepsinas/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Leucina/síntesis química , Administración Oral , Animales , Azepinas/química , Azepinas/farmacocinética , Azepinas/farmacología , Disponibilidad Biológica , Catepsina K , Cromatografía Líquida de Alta Presión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Humanos , Técnicas In Vitro , Leucina/análogos & derivados , Leucina/química , Leucina/farmacocinética , Leucina/farmacología , Espectrometría de Masas , Modelos Moleculares , Estructura Molecular , Osteoclastos/efectos de los fármacos , Unión Proteica , Ratas , Estereoisomerismo , Relación Estructura-Actividad
2.
J Biol Chem ; 276(15): 11507-11, 2001 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-11148212

RESUMEN

Cathepsins K and L are related cysteine proteases that have been proposed to play important roles in osteoclast-mediated bone resorption. To further examine the putative role of cathepsin L in bone resorption, we have evaluated selective and potent inhibitors of human cathepsin L and cathepsin K in an in vitro assay of human osteoclastic resorption and an in situ assay of osteoclast cathepsin activity. The potent selective cathepsin L inhibitors (K(i) = 0.0099, 0.034, and 0.27 nm) were inactive in both the in situ cytochemical assay (IC(50) > 1 micrometer) and the osteoclast-mediated bone resorption assay (IC(50) > 300 nm). Conversely, the cathepsin K selective inhibitor was potently active in both the cytochemical (IC(50) = 63 nm) and resorption (IC(50) = 71 nm) assays. A recently reported dipeptide aldehyde with activity against cathepsins L (K(i) = 0.052 nm) and K (K(i) = 1.57 nm) was also active in both assays (IC(50) = 110 and 115 nm, respectively) These data confirm that cathepsin K and not cathepsin L is the major protease responsible for human osteoclastic bone resorption.


Asunto(s)
Resorción Ósea , Catepsinas/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Endopeptidasas , Osteoclastos/efectos de los fármacos , Catepsina L , Cisteína Endopeptidasas , Humanos , Osteoclastos/citología , Células Tumorales Cultivadas
3.
Osteoarthritis Cartilage ; 8(6): 452-63, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11069730

RESUMEN

OBJECTIVE: To characterize a novel secreted frizzled-related protein (SFRP) and determine its tissue distribution at the mRNA and protein level. METHODS: The FrzB-2 gene was identified by expressed sequence tag (EST) analysis of human tissue-derived libraries. Tissue distribution of FrzB-2 mRNA was determined by Northern blot analysis and in situ hybridization. FrzB-2 protein reactivity was localized in human OA articular cartilage by immunocytochemistry, using a polyclonal antibody against a peptide sequence unique to FrzB-2. Apoptosis was detected in articular cartilage sections using Tunel staining. RESULTS: ESTs corresponding to FrzB-2 were found in osteoblast, chondrosarcoma, osteosarcoma, osteoclastoma and synovial fibroblast libraries. FrzB-2 mRNA is expressed in a number of tissues and cell types including bone-related cells and tissues such as primary human osteoblasts and osteoclastoma. In situ hybridization studies showed strong FrzB-2 mRNA expression in human chondrocytes in human osteoarthritic (OA) cartilage but negligible levels in normal cartilage chondrocytes. The FrzB-2 cDNA encodes a secreted 40 kDa protein consisting of 346 amino acids. FrzB-2 is 92. 5% identical to the rat orthologue, DDC-4, which has been shown to be associated with physiological apoptosis. FrzB-2 protein was selectively detected in human OA articular cartilage by immunocytochemistry, using a polyclonal antibody. Consistent with its potential role in apoptosis, positive FrzB-2 staining and Tunel positive nuclei staining were detected in chondrocyte clones in sections of human OA cartilage. CONCLUSION: These data suggest that FrzB-2 may play a role in apoptosis and that the expression of this protein may be important in the pathogenesis of human OA.


Asunto(s)
Apoptosis/fisiología , Condrocitos/metabolismo , Glicoproteínas/fisiología , Osteoartritis/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Northern Blotting , Condrocitos/patología , Expresión Génica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Osteoartritis/patología , ARN Mensajero/genética , Proteínas Recombinantes/metabolismo
4.
J Cell Biol ; 149(4): 983-93, 2000 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-10811836

RESUMEN

A variable skeleto-hematopoietic phenotype was observed in collagen X null mice which mirrored the defects in transgenic (Tg) mice with dominant interference collagen X mutations (Jacenko, O., P. LuValle, and B.R. Olsen. 1993. Nature. 365:56-61). Specifically, perinatal lethality was seen in approximately 10.8% of null mutants at week three after birth, and in another subset by 12 wk. In perinatal lethal mutants, growth plates were compressed, trabecular bone reduced, and hematopoietic aplasia and erythrocyte-filled vascular sinusoids were apparent in marrows. Lymphatic organs, reduced to approximately 80% that of controls, displayed altered architecture and lymphocyte content. In thymuses, a paucity of cortical CD3(+)/CD4(+)/CD8(+) lymphocytes was consistent with the marrow's inability to replenish maturing T cells. In spleens, an unaltered T cell distribution was coupled with diffuse staining for IgD(+)/B220(+) B cells, whose reduction was prominent in poorly organized lymphatic nodules. Disorderly arrays of splenic macrophages surrounding periarteriolar lymphatic sheaths and a red pulp depletion further complemented the Tg perinatal lethal phenotype. Moreover, subtle growth plate compressions and hematopoietic changes were seen in all null mice. Data from Tg and null mice implicate the disruption of collagen X function in the observed skeleto-hematopoietic defects, and suggest that hypertrophic cartilage and endochondral skeletogenesis may contribute to the marrow microenvironment prerequisite for blood cell differentiation.


Asunto(s)
Médula Ósea/patología , Colágeno/genética , Placa de Crecimiento/patología , Hematopoyesis , Tejido Linfoide/patología , Animales , Ratones , Ratones Noqueados , Ratones Transgénicos , Osificación Heterotópica/etiología , Osificación Heterotópica/genética , Osteocondrodisplasias/etiología , Osteocondrodisplasias/genética , Fenotipo , Bazo/patología , Timo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA