Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 13050, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506539

RESUMEN

The most continuous and ubiquitous seismic signal on Earth is the microseism, closely related to ocean wave energy coupling with the solid Earth. A peculiar feature of microseism recorded in Antarctica is the link with the sea ice, making the temporal pattern of microseism amplitudes different with respect to the microseism recorded in low-middle latitude regions. Indeed, during austral winters, in Antarctica the oceanic waves cannot efficiently excite seismic energy because of the sea ice in the Southern Ocean. Here, we quantitatively investigate the relationship between microseism, recorded along the Antarctic coasts, and sea ice concentration. In particular, we show a decrease in sea ice sensitivity of microseism, due to the increasing distance from the station recording the seismic signal. The influence seems to strongly reduce for distances above 1,000 km. Finally, we present an algorithm, based on machine learning techniques, allowing to spatially and temporally reconstruct the sea ice distribution around Antarctica based on the microseism amplitudes. This technique will allow reconstructing the sea ice concentration in both Arctic and Antarctica in periods when the satellite images, routinely used for sea ice monitoring, are not available, with wide applications in many fields, first of all climate studies.

2.
Sci Rep ; 9(1): 6717, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040346

RESUMEN

A new sequence of eruptions occurred at Mt. Etna volcano during the first half of 2017, after almost 8 months of quiescence. These episodes had low-to-mild intensity and markedly differ from the violent paroxysms occurred at the Voragine Crater (VOR) during December 2015 and May 2016. Despite the general weak explosive nature of the eruptions, the activity during 2017 revealed unusually complex dynamics of magma ascent and interaction. Detection and investigation of such dynamics required a multidisciplinary approach in which bulk rock compositions, crystal chemical zoning, diffusion chronometry and ground deformation data have been combined. Bulk rock major and trace elements suggest that the 2017 magmas followed a differentiation path similar to that experienced by magmas erupted at Mt. Etna during the 2015-16 eruptions at VOR. Olivine core compositions and zoning patterns indicate the presence of multiple magmatic environments at depth that strictly interacted each other through some episodes of intrusion and mixing before and during the 2017 eruptive events. Timescales retrieved from diffusion chronometry on olivine normal and reverse zoning correlate well with the ground deformation stages detected through geodetic data and associated models, thus allowing to track the evolution through time of the 2017 volcanic activity. Combination of all petrological and geodetic observations supports the idea that dynamics of magma transfer driving the eruptive episodes of 2017 have been a direct consequence of the violent eruptions occurred at VOR on May 2016, which boosted the ascent of new magma from depth and improved the efficiency of the plumbing system to transfer it upward to the surface. We propose a mechanism of self-feeding replenishment of the volcano plumbing system during 2017, where magma recharge from depth is triggered by sudden unloading of the magma column consequential to the violent paroxysmal activity occurred on May 2016 at VOR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...