Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7042, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923750

RESUMEN

The unconventional superconductor Sr2RuO4 has long served as a benchmark for theories of correlated-electron materials. The determination of the superconducting pairing mechanism requires detailed experimental information on collective bosonic excitations as potential mediators of Cooper pairing. We have used Ru L3-edge resonant inelastic x-ray scattering to obtain comprehensive maps of the electronic excitations of Sr2RuO4 over the entire Brillouin zone. We observe multiple branches of dispersive spin and orbital excitations associated with distinctly different energy scales. The spin and orbital dynamical response functions calculated within the dynamical mean-field theory are in excellent agreement with the experimental data. Our results highlight the Hund metal nature of Sr2RuO4 and provide key information for the understanding of its unconventional superconductivity.

2.
Phys Rev Lett ; 127(22): 227201, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34889637

RESUMEN

Spin-orbit Mott insulators composed of t_{2g}^{4} transition metal ions may host excitonic magnetism due to the condensation of spin-orbital J=1 triplons. Prior experiments suggest that the 4d antiferromagnet Ca_{2}RuO_{4} embodies this notion, but a J=0 nonmagnetic state as a basis of the excitonic picture remains to be confirmed. We use Ru L_{3}-edge resonant inelastic x-ray scattering to reveal archetypal J multiplets with a J=0 ground state in the cubic compound K_{2}RuCl_{6}, which are well described within the LS-coupling scheme. This result highlights the critical role of unquenched orbital moments in 4d-electron compounds and calls for investigations of quantum criticality and excitonic magnetism on various crystal lattices.

3.
Nat Commun ; 12(1): 4512, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301938

RESUMEN

α-RuCl3 is a major candidate for the realization of the Kitaev quantum spin liquid, but its zigzag antiferromagnetic order at low temperatures indicates deviations from the Kitaev model. We have quantified the spin Hamiltonian of α-RuCl3 by a resonant inelastic x-ray scattering study at the Ru L3 absorption edge. In the paramagnetic state, the quasi-elastic intensity of magnetic excitations has a broad maximum around the zone center without any local maxima at the zigzag magnetic Bragg wavevectors. This finding implies that the zigzag order is fragile and readily destabilized by competing ferromagnetic correlations. The classical ground state of the experimentally determined Hamiltonian is actually ferromagnetic. The zigzag state is stabilized by quantum fluctuations, leaving ferromagnetism - along with the Kitaev spin liquid - as energetically proximate metastable states. The three closely competing states and their collective excitations hold the key to the theoretical understanding of the unusual properties of α-RuCl3 in magnetic fields.

4.
Nat Mater ; 18(6): 563-567, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30911120

RESUMEN

Ruthenium compounds serve as a platform for fundamental concepts such as spin-triplet superconductivity1, Kitaev spin liquids2-5 and solid-state analogues of the Higgs mode in particle physics6,7. However, basic questions about the electronic structure of ruthenates remain unanswered, because several key parameters (including Hund's coupling, spin-orbit coupling and exchange interactions) are comparable in magnitude and their interplay is poorly understood, partly due to difficulties in synthesizing large single crystals for spectroscopic experiments. Here we introduce a resonant inelastic X-ray scattering (RIXS)8,9 technique capable of probing collective modes in microcrystals of 4d electron materials. We observe spin waves and spin-state transitions in the honeycomb antiferromagnet SrRu2O6 (ref. 10) and use the extracted exchange interactions and measured magnon gap to explain its high Néel temperature11-16. We expect that the RIXS method presented here will enable momentum-resolved spectroscopy of a large class of 4d transition-metal compounds.

5.
Phys Rev Lett ; 119(9): 097001, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28949586

RESUMEN

Spin excitations in the overdoped high temperature superconductors Tl_{2}Ba_{2}CuO_{6+δ} and (Bi,Pb)_{2}(Sr,La)_{2}CuO_{6+δ} were investigated by resonant inelastic x-ray scattering (RIXS) as functions of doping and detuning of the incoming photon energy above the Cu-L_{3} absorption peak. The RIXS spectra at optimal doping are dominated by a paramagnon feature with peak energy independent of photon energy, similar to prior results on underdoped cuprates. Beyond optimal doping, the RIXS data indicate a sharp crossover to a regime with a strong contribution from incoherent particle-hole excitations whose maximum shows a fluorescencelike shift upon detuning. The spectra of both compound families are closely similar, and their salient features are reproduced by exact-diagonalization calculations of the single-band Hubbard model on a finite cluster. The results are discussed in the light of recent transport experiments indicating a quantum phase transition near optimal doping.

6.
Phys Rev Lett ; 117(10): 107001, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27636488

RESUMEN

We have studied the magnetic excitations of electron-doped Sr_{2-x}La_{x}IrO_{4} (0≤x≤0.10) using resonant inelastic x-ray scattering at the Ir L_{3} edge. The long-range magnetic order is rapidly lost with increasing x, but two-dimensional short-range order (SRO) and dispersive magnon excitations with nearly undiminished spectral weight persist well into the metallic part of the phase diagram. The magnons in the SRO phase are heavily damped and exhibit anisotropic softening. Their dispersions are well described by a pseudospin-1/2 Heisenberg model with exchange interactions whose spatial range increases with doping. We also find a doping-independent high-energy magnetic continuum, which is not described by this model. The spin-orbit excitons arising from the pseudospin-3/2 manifold of the Ir ions broaden substantially in the SRO phase, but remain largely separated from the low-energy magnons. Pseudospin-1/2 models are therefore a good starting point for the theoretical description of the low-energy magnetic dynamics of doped iridates.

7.
Phys Rev Lett ; 116(13): 136401, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27081993

RESUMEN

We have used Raman scattering to investigate the magnetic excitations and lattice dynamics in the prototypical spin-orbit Mott insulators Sr_{2}IrO_{4} and Sr_{3}Ir_{2}O_{7}. Both compounds exhibit pronounced two-magnon Raman scattering features with different energies, line shapes, and temperature dependencies, which in part reflect the different influence of long-range frustrating exchange interactions. Additionally, we find strong Fano asymmetries in the line shapes of low-energy phonon modes in both compounds, which disappear upon cooling below the antiferromagnetic ordering temperatures. These unusual phonon anomalies indicate that the spin-orbit coupling in Mott-insulating iridates is not sufficiently strong to quench the orbital dynamics in the paramagnetic state.

8.
Phys Rev Lett ; 114(21): 217003, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26066453

RESUMEN

We used resonant inelastic x-ray scattering (RIXS) with and without analysis of the scattered photon polarization, to study dispersive spin excitations in the high temperature superconductor YBa_{2}Cu_{3}O_{6+x} over a wide range of doping levels (0.1≤x≤1). The excitation profiles were carefully monitored as the incident photon energy was detuned from the resonant condition, and the spin excitation energy was found to be independent of detuning for all x. These findings demonstrate that the largest fraction of the spin-flip RIXS profiles in doped cuprates arises from magnetic collective modes, rather than from incoherent particle-hole excitations as recently suggested theoretically [Benjamin et al. Phys. Rev. Lett. 112, 247002 (2014)]. Implications for the theoretical description of the electron system in the cuprates are discussed.

9.
Phys Rev Lett ; 114(4): 047001, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25679903

RESUMEN

We report a combination of Fe Kß x-ray emission spectroscopy and density functional reduced Stoner theory calculations to investigate the correlation between structural and magnetic degrees of freedom in CaFe2(As1-xPx)2. The puzzling temperature behavior of the local moment found in rare earth-doped CaFe2As2 [H. Gretarsson et al., Phys. Rev. Lett. 110, 047003 (2013)] is also observed in CaFe2(As1-xPx)2. We explain this phenomenon based on first-principles calculations with scaled magnetic interaction. One scaling parameter is sufficient to describe quantitatively the magnetic moments in both CaFe2(As1-xPx)2 (x=0.055) and Ca0.78La0.22Fe2As2 at all temperatures. The anomalous growth of the local moments with increasing temperature can be understood from the observed large thermal expansion of the c-axis lattice parameter combined with strong magnetoelastic coupling. These effects originate from the strong tendency to form As-As dimers across the Ca layer in the CaFe2As2 family of materials. Our results emphasize the dual local-itinerant character of magnetism in Fe pnictides.

10.
Phys Rev Lett ; 112(14): 147201, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24766006

RESUMEN

We report x-ray resonant magnetic scattering and resonant inelastic x-ray scattering studies of epitaxially strained Sr2IrO4 thin films. The films were grown on SrTiO3 and (LaAlO3)0.3(Sr2AlTaO6)0.7 substrates, under slight tensile and compressive strains, respectively. Although the films develop a magnetic structure reminiscent of bulk Sr2IrO4, the magnetic correlations are extremely anisotropic, with in-plane correlation lengths significantly longer than the out-of-plane correlation lengths. In addition, the compressive (tensile) strain serves to suppress (enhance) the magnetic ordering temperature TN, while raising (lowering) the energy of the zone-boundary magnon. Quantum chemical calculations show that the tuning of magnetic energy scales can be understood in terms of strain-induced changes in bond lengths.

11.
Phys Rev Lett ; 110(25): 257001, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23829752

RESUMEN

We study the structural and magnetic orders in electron-doped BaFe(2-x)Ni(x)As2 by high-resolution synchrotron x-ray and neutron scatterings. Upon Ni doping x, the nearly simultaneous tetragonal-to-orthorhombic structural (T(s)) and antiferromagnetic (T(N)) phase transitions in BaFe2As2 are gradually suppressed and separated, resulting in T(s)>T(N) with increasing x, as was previously observed. However, the temperature separation between T(s) and T(N) decreases with increasing x for x≥0.065, tending toward a quantum bicritical point near optimal superconductivity at x≈0.1. The zero-temperature transition is preempted by the formation of a secondary incommensurate magnetic phase in the region 0.088≲x≲0.104, resulting in a finite value of T(N)≈T(c) + 10 K above the superconducting dome around x≈0.1. Our results imply an avoided quantum critical point, which is expected to strongly influence the properties of both the normal and superconducting states.

12.
Phys Rev Lett ; 110(4): 047003, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-25166195

RESUMEN

We report an Fe Kß x-ray emission spectroscopy study of local magnetic moments in the rare-earth doped iron pnictide Ca(1-x)RE(x)Fe(2)As(2) (RE = La, Pr, and Nd). In all samples studied the size of the Fe local moment is found to decrease significantly with temperature and goes from ∼ 0.9 µ(B) at T = 300 K to ∼ 0.45 µ(B) at T = 70 K. In the collapsed tetragonal phase of Nd- and Pr-doped samples (T<70 K) the local moment is quenched, while the moment remains unchanged for the La-doped sample, which does not show lattice collapse. Our results show that Ca(1-x)RE(x)Fe(2)As(2) (RE = Pr and Nd) exhibits a spin-state transition and provide direct evidence for a nonmagnetic Fe(2+) ion in the collapsed tetragonal phase; spin state as predicted by Yildirim. We argue that the gradual change of the spin state over a wide temperature range reveals the importance of multiorbital physics, in particular the competition between the crystal field split Fe 3d orbitals and the Hund's rule coupling.

13.
Phys Rev Lett ; 110(7): 076402, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25166387

RESUMEN

The electronic structure of the honeycomb lattice iridates Na(2)IrO(3) and Li(2)IrO(3) has been investigated using resonant inelastic x-ray scattering (RIXS). Crystal-field-split d-d excitations are resolved in the high-resolution RIXS spectra. In particular, the splitting due to noncubic crystal fields, derived from the splitting of j(eff)=3/2 states, is much smaller than the typical spin-orbit energy scale in iridates, validating the applicability of j(eff) physics in A(2)IrO(3). We also find excitonic enhancement of the particle-hole excitation gap around 0.4 eV, indicating that the nearest-neighbor Coulomb interaction could be large. These findings suggest that both Na(2)IrO(3) and Li(2)IrO(3) can be described as spin-orbit Mott insulators, similar to the square lattice iridate Sr(2)IrO(4).

14.
J Phys Condens Matter ; 23(36): 365701, 2011 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-21852730

RESUMEN

We report a comprehensive x-ray scattering study of the low-temperature orthorhombic (LTO)-high-temperature tetragonal (HTT) structural phase transition in 1% iron-doped La(2-x)Sr(x)CuO(4) (x = 0.2). The superlattice (032) peak intensity and the width are investigated in detail for a wide temperature range. We found that the structural phase transition is not sharp and the tilt ordering of the CuO(6) octahedra persists above the transition temperature T(S) (≈77 K). Even at room temperature, the superlattice peak is still observable. The structural phase transition is identified as an order-disorder type phase transition. We found that the tilt ordering in our iron-doped material is always short-ranged, and in the HTT phase the correlation between the tilts along the b axis is better preserved than that along the a axis. Moreover, we identify the role of the Fe as the nucleation centers of the LTO domains in the structural phase transition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...