Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 78: 46-55, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29132100

RESUMEN

The purpose of this study was to evaluate LC Bead LUMI™ (40-90µm and 70-150µm) in order to determine if their increased resistance to compression influences microsphere penetration and distribution compared to more compressible commercial microspheres. LC Bead LUMI™ 40-90µm and 70-150µm, LC BeadM1® 70-150µm, Embozene™ 40µm and Embozene™ 100µm size and distributions were measured using optical microscopy. Penetration in vitro was evaluated using an established 'plate model', consisting of a calibrated tapered gap between a glass plate and plastic housing to allow visual observation of microsphere penetration depth. Behaviour in vivo was assessed using a rabbit renal embolization model with histopathologic confirmation of vessel penetration depth. Penetration behaviour in vitro was reproducible and commensurate with the measured microsphere size, the smaller the microsphere the deeper the penetration. Comparison of the microsphere diameter measured on the 2D plate model versus the corresponding average microsphere size measured by histopathology in the kidney showed no significant differences (p = > 0.05 Mann-Whitney, demonstrating good in vitro - in vivo predictive capabilities of the plate model) confirming predictable performance for LC Bead LUMI™ (40-90µm and 70-150µm) based on microsphere size, their increased rigidity having no bearing on their depth of penetration and distribution. An assessment of a LC Bead LUMI™ (40-90µm and 70-150µm) has shown that despite having greater resistance to compression, these microspheres behave in a predictable manner within in vitro and in vivo models comparable with more compressible microspheres of similar sizes.


Asunto(s)
Fuerza Compresiva , Microesferas , Animales , Transporte Biológico , Embolización Terapéutica , Vidrio/química , Riñón/citología , Riñón/metabolismo , Ensayo de Materiales , Conejos
2.
Theranostics ; 7(8): 2164-2176, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28740542

RESUMEN

PURPOSE: To evaluate the plasma and tissue pharmacokinetics, safety and toxicity following intra-arterial hepatic artery administration of Vandetanib (VTB)-eluting Radiopaque Beads (VERB) in healthy swine. MATERIALS AND METHODS: In a first phase, healthy swine were treated with hepatic intra-arterial administration of VERB at target dose loading strengths of 36 mg/mL (VERB36), 72 mg/mL (VERB72) and 120 mg/mL (VERB120). Blood and tissue samples were taken and analysed for VTB and metabolites to determine pharmacokinetic parameters for the different dose forms over 30 days. In a second phase, animals were treated with unloaded radiopaque beads or high dose VTB loaded beads (VERB100, 100 mg/mL). Tissue samples from embolized and non-embolized areas of the liver were evaluated at necropsy (30 and 90 days) for determination of VTB and metabolite levels and tissue pathology. Imaging was performed prior to sacrifice using multi-detector computed tomography (MDCT) and imaging findings correlated with pathological changes in the tissue and location of the radiopaque beads. RESULTS: The peak plasma levels of VTB (Cmax) released from the various doses of VERB ranged between 6.19-17.3 ng/mL indicating a low systemic burst release. The plasma profile of VTB was consistent with a distribution phase up to 6 h after administration followed by elimination with a half-life of 20-23 h. The AUC of VTB and its major metabolite N-desmethyl vandetanib (NDM VTB) was approximately linear with the dose strength of VERB. VTB plasma levels were at or below limits of detection two weeks after administration. In liver samples, VTB and NDM VTB were present in treated sections at 30 days after administration at levels above the in vitro IC50 for biological effectiveness. At 90 days both analytes were still present in treated liver but were near or below the limit of quantification in untreated liver sections, demonstrating sustained release from the VERB. Comparison of the reduction of the liver lobe size and associated tissue changes suggested a more effective embolization with VERB compared to the beads without drug. CONCLUSIONS: Hepatic intra-arterial administration of VERB results in a low systemic exposure and enables sustained delivery of VTB to target tissues following embolization. Changes in the liver tissue are consistent with an effective embolization and this study has demonstrated that VERB100 is well tolerated with no obvious systemic toxicity.


Asunto(s)
Medios de Contraste/efectos adversos , Medios de Contraste/farmacocinética , Embolización Terapéutica/métodos , Hígado/patología , Piperidinas/efectos adversos , Piperidinas/farmacocinética , Quinazolinas/efectos adversos , Quinazolinas/farmacocinética , Animales , Medios de Contraste/administración & dosificación , Inyecciones Intraarteriales , Hígado/diagnóstico por imagen , Modelos Animales , Piperidinas/administración & dosificación , Quinazolinas/administración & dosificación , Radiografía Abdominal , Porcinos , Tomografía Computarizada por Rayos X
3.
J Mater Sci Mater Med ; 27(1): 13, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26676859

RESUMEN

Clinical use of DC Bead™ loaded with doxorubicin (DEBDOX™) or irinotecan (DEBIRI™), for the treatment of primary and secondary tumours of the liver respectively, is showing great promise. Recently there has been a tendency to select smaller bead size ranges to treat tumours in an effort to allow more drug dose to be administered, improve tumoural penetration and resultant drug delivery and tumour coverage. Herein we describe the development and performance characterisation of a new DC Bead size range (DC BeadM1 (TM), 70-150 µm) capable of an increased bead delivery in the distal vasculature, corresponding to greater tumour coverage and drug dose delivered. Both unloaded and drug loaded DC BeadM1 were shown to have a greater density of distal volume of penetration although the ultimate distal level of penetration was the same as that of the 100-300 µm beads in an in vitro penetration model. Elution of doxorubicin was slower than irinotecan elution, but it was similar when comparing the same drug elution from 70 to 150 µm compared to 100-300 µm beads. Radiopaque versions of 70-150 and 100-300 µm beads were prepared in order to evaluate distribution ex vivo using µ-CT and doxorubicin distribution using epifluorescent microscopy. Liver distribution of the radiopaque versions of the beads was shown to be more distal and efficient at filling smaller vessels with the DC BeadM1 and correspondingly more beads were found per vessel histologically with a larger area of drug coverage with the smaller size range. This study indicates that the smaller (70-150 µm) beads should permit an increased dose of drug to be administered to both hypervascular and hypovascular tumours as compared to 100-300 µm beads.


Asunto(s)
Antineoplásicos/administración & dosificación , Camptotecina/análogos & derivados , Catéteres , Doxorrubicina/administración & dosificación , Portadores de Fármacos , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Animales , Antineoplásicos/farmacocinética , Camptotecina/administración & dosificación , Camptotecina/farmacocinética , Doxorrubicina/farmacocinética , Irinotecán , Conejos , Microtomografía por Rayos X
4.
Philos Trans A Math Phys Eng Sci ; 371(2002): 20130262, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24080630
5.
Biomed Microdevices ; 14(1): 153-63, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21987002

RESUMEN

A microfluidic based device has been developed for the characterisation of embolisation behaviour with polyvinyl alcohol (PVA) hydrogel beads within a microchannel network with bifurcations which mimic the blood vessel network. Both distal and proximal embolisations were achieved within the PMMA-made microdevice exhibiting comparable embolisation characteristics with those observed in vivo. Results showed that small beads allowed more distal embolisations with a reduced control of the spatial location of occlusion sites. In contrast, large beads generated effective proximal embolisations with an improved reproducibility of embolisation performance. Embolic bead hydrodynamics, partitioning at bifurcations, penetration through microchannels and embolisation locations across the channel network were characterised by quantifying the effects of embolic bead size, bead concentration, channel geometry and fluidic conditions. This development provided further insights into the physical principles governing embolisation performances within the constructed microdevices allowing the improvement of the predictability and controllability of the clinical process outcomes. Furthermore, it can potentially provide a useful platform for preclinical research as an alternative to animal models, with an ultimate goal to reduce the amount of animal testing.


Asunto(s)
Biomimética , Embolización Terapéutica/instrumentación , Técnicas Analíticas Microfluídicas , Alcohol Polivinílico/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...