Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Exp Neurol ; 357: 114176, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35870522

RESUMEN

Visual impairment caused by retinal ganglion cell (RGC) axon damage or degeneration affects millions of individuals throughout the world. While some progress has been made in promoting long-distance RGC axon regrowth following injury, it remains unclear whether RGC axons can properly reconnect with their central targets to restore visual function. Additionally, the regenerative capacity of many RGC subtypes remains unknown in part due to a lack of available genetic tools. Here, we use a new mouse line, Sema6ACreERT2, that labels On direction-selective RGCs (oDSGCs) and characterize the survival and regenerative potential of these cells following optic nerve crush (ONC). In parallel, we use a previously characterized mouse line, Opn4CreERT2, to answer these same questions for M1 intrinsically photosensitive RGCs (ipRGCs). We find that both M1 ipRGCs and oDSGCs are resilient to injury but do not display long-distance axon regrowth following Lin28a overexpression. Unexpectedly, we found that M1 ipRGC, but not oDSGC, intraretinal axons exhibit ectopic branching and are misaligned near the optic disc between one- and three-weeks following injury. Additionally, we observe that numerous ectopic presynaptic specializations associate with misguided ipRGC intraretinal axons. Taken together, these results reveal insights into the injury response of M1 ipRGCs and oDSGCs, providing a foundation for future efforts seeking to restore visual system function following injury.


Asunto(s)
Traumatismos del Nervio Óptico , Semaforinas , Animales , Axones/fisiología , Ratones , Ratones Endogámicos C57BL , Compresión Nerviosa , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/metabolismo , Retina , Células Ganglionares de la Retina/metabolismo , Semaforinas/metabolismo
3.
J Comp Neurol ; 527(1): 282-296, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30076594

RESUMEN

The accessory optic system (AOS) detects retinal image slip and reports it to the oculomotor system for reflexive image stabilization. Here, we characterize two Cre lines that permit genetic access to AOS circuits responding to vertical motion. The first (Pcdh9-Cre) labels only one of the four subtypes of ON direction-selective retinal ganglion cells (ON-DS RGCs), those preferring ventral retinal motion. Their axons diverge from the optic tract just behind the chiasm and selectively innervate the medial terminal nucleus (MTN) of the AOS. Unlike most RGC subtypes examined, they survive after optic nerve crush. The second Cre-driver line (Pdzk1ip1-Cre) labels postsynaptic neurons in the MTN. These project predominantly to the other major terminal nucleus of the AOS, the nucleus of the optic tract (NOT). We find that the transmembrane protein semaphorin 6A (Sema6A) is required for the formation of axonal projections from the MTN to the NOT, just as it is for the retinal innervation of the MTN. These new tools permit manipulation of specific circuits in the AOS and show that Sema6A is required for establishing AOS connections in multiple locations.


Asunto(s)
Percepción de Movimiento/fisiología , Células Ganglionares de la Retina/fisiología , Semaforinas/metabolismo , Vías Visuales/fisiología , Animales , Ratones , Ratones Transgénicos , Tracto Óptico/fisiología
4.
Nat Commun ; 9(1): 2389, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921864

RESUMEN

Early during PNS regeneration, regenerating axons emerge from the proximal nerve stump, yet whether they extend simultaneously or whether pioneering axons establish a path for follower axons remains unknown. Moreover, the molecular mechanisms underlying robust regeneration are incompletely understood. Using live imaging, we demonstrate that in zebrafish pioneering axons establish a regenerative path for follower axons. We find this process requires the synaptic receptor lrp4, and in lrp4 mutants pioneers are unaffected while follower axons frequently stall at the injury gap, providing evidence for molecular diversity between pioneering and follower axons in regeneration. We demonstrate that Lrp4 promotes regeneration through an axon extrinsic mechanism and independent of membrane anchoring and MuSK co-receptor signaling essential for synaptic development. Finally, we show that Lrp4 coordinates the realignment of denervated Schwann cells with regenerating axons, consistent with a model by which Lrp4 is repurposed to promote sustained peripheral nerve regeneration via axon-glia interactions.


Asunto(s)
Proteínas Relacionadas con Receptor de LDL/metabolismo , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Axones/fisiología , Proteínas de Homeodominio , Proteínas Relacionadas con Receptor de LDL/genética , Microscopía Confocal , Mutación , Neuroglía/metabolismo , Neuroglía/fisiología , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/fisiopatología , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Células de Schwann/metabolismo , Células de Schwann/fisiología , Imagen de Lapso de Tiempo , Pez Cebra , Proteínas de Pez Cebra/genética
5.
Genes Dev ; 30(9): 1058-69, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27151977

RESUMEN

Motor axons approach muscles that are prepatterned in the prospective synaptic region. In mice, prepatterning of acetylcholine receptors requires Lrp4, a LDLR family member, and MuSK, a receptor tyrosine kinase. Lrp4 can bind and stimulate MuSK, strongly suggesting that association between Lrp4 and MuSK, independent of additional ligands, initiates prepatterning in mice. In zebrafish, Wnts, which bind the Frizzled (Fz)-like domain in MuSK, are required for prepatterning, suggesting that Wnts may contribute to prepatterning and neuromuscular development in mammals. We show that prepatterning in mice requires Lrp4 but not the MuSK Fz-like domain. In contrast, prepatterning in zebrafish requires the MuSK Fz-like domain but not Lrp4. Despite these differences, neuromuscular synapse formation in zebrafish and mice share similar mechanisms, requiring Lrp4, MuSK, and neuronal Agrin but not the MuSK Fz-like domain or Wnt production from muscle. Our findings demonstrate that evolutionary divergent mechanisms establish muscle prepatterning in zebrafish and mice.


Asunto(s)
Evolución Biológica , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/embriología , Unión Neuromuscular/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/genética , Proteínas de la Matriz Extracelular/genética , Proteínas de Homeodominio , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas Tirosina Quinasas Receptoras/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
6.
Development ; 139(5): 1023-33, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22318632

RESUMEN

In zebrafish, the MuSK receptor initiates neuromuscular synapse formation by restricting presynaptic growth cones and postsynaptic acetylcholine receptors (AChRs) to the center of skeletal muscle cells. Increasing evidence suggests a role for Wnts in this process, yet how muscle cells respond to Wnt signals is unclear. Here, we show that in vivo, wnt11r and wnt4a initiate MuSK translocation from muscle membranes to recycling endosomes and that this transition is crucial for AChR accumulation at future synaptic sites. Moreover, we demonstrate that components of the planar cell polarity pathway colocalize to recycling endosomes and that this localization is MuSK dependent. Knockdown of several core components disrupts MuSK translocation to endosomes, AChR localization and axonal guidance. We propose that Wnt-induced trafficking of the MuSK receptor to endosomes initiates a signaling cascade to align pre- with postsynaptic elements. Collectively, these findings suggest a general mechanism by which Wnt signals shape synaptic connectivity through localized receptor endocytosis.


Asunto(s)
Endocitosis/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Sinapsis/fisiología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , Proteína Wnt4/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Membrana Celular/metabolismo , Polaridad Celular , Endosomas/metabolismo , Proteínas de Homeodominio , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Proteínas Tirosina Quinasas Receptoras/genética , Receptores Colinérgicos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sinapsis/ultraestructura , Proteínas Wnt/genética , Proteína Wnt4/genética , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA