Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes ; 72(10): 1470-1482, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37494666

RESUMEN

Immunomodulation combined with antigen therapy holds great promise to arrest autoimmune type 1 diabetes, but clinical translation is hampered by a lack of prognostic biomarkers. Low-dose anti-CD3 plus Lactococcus lactis bacteria secreting proinsulin and IL-10 reversed new-onset disease in nonobese diabetic (NOD) mice, yet some mice were resistant to the therapy. Using miRNA profiling, six miRNAs (i.e., miR-34a-5p, miR-125a-3p, miR-193b-3p, miR-328, miR-365-3p, and miR-671-3p) were identified as differentially expressed in plasma of responder versus nonresponder mice before study entry. After validation and stratification in an independent cohort, plasma miR-193b-3p and miR-365-3p, combined with age and glycemic status at study entry, had the best power to predict, with high sensitivity and specificity, poor response to the therapy. These miRNAs were highly abundant in pancreas-infiltrating neutrophils and basophils with a proinflammatory and activated phenotype. Here, a set of miRNAs and disease-associated parameters are presented as a predictive signature for the L. lactis-based immunotherapy outcome in new-onset type 1 diabetes, hence allowing targeted recruitment of trial participants and accelerated trial execution. ARTICLE HIGHLIGHTS: Low-dose anti-CD3 combined with oral gavage of genetically modified Lactococcus lactis bacteria secreting human proinsulin and IL-10 holds great promise to arrest autoimmune type 1 diabetes, but the absence of biomarkers predicting therapeutic success hampers clinical translation. A set of cell-free circulation miRNAs together with age and glycemia at baseline predicts a poor response after L. lactis-based immunotherapy in nonobese mice with new-onset diabetes. Pancreas-infiltrating neutrophils and basophils are identified as potential cellular sources of discovered miRNAs. The prognostic signature could guide targeted recruitment of patients with newly diagnosed type 1 diabetes in clinical trials with the L. lactis-based immunotherapy.


Asunto(s)
Diabetes Mellitus Tipo 1 , Lactococcus lactis , MicroARNs , Humanos , Animales , Ratones , Diabetes Mellitus Tipo 1/terapia , Interleucina-10 , Lactococcus lactis/genética , Proinsulina/genética , Perfilación de la Expresión Génica , MicroARNs/genética , Biomarcadores , Ratones Endogámicos NOD , Inmunoterapia
2.
Diabetes Metab Res Rev ; 39(8): e3696, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37466955

RESUMEN

AIMS: Angiotensin I-converting enzyme type 2 (ACE2), a pivotal SARS-CoV-2 receptor, has been shown to be expressed in multiple cells, including human pancreatic beta-cells. A putative bidirectional relationship between SARS-CoV-2 infection and diabetes has been suggested, confirming the hypothesis that viral infection in beta-cells may lead to new-onset diabetes or worse glycometabolic control in diabetic patients. However, whether ACE2 expression levels are altered in beta-cells of diabetic patients has not yet been investigated. Here, we aimed to elucidate the in situ expression pattern of ACE2 in Type 2 diabetes (T2D) with respect to non-diabetic donors which may account for a higher susceptibility to SARS-CoV-2 infection in beta-cells. MATERIAL AND METHODS: Angiotensin I-converting enzyme type 2 immunofluorescence analysis using two antibodies alongside insulin staining was performed on formalin-fixed paraffin embedded pancreatic sections obtained from n = 20 T2D and n = 20 non-diabetic (ND) multiorgan donors. Intensity and colocalisation analyses were performed on a total of 1082 pancreatic islets. Macrophage detection was performed using anti-CD68 immunohistochemistry on serial sections from the same donors. RESULTS: Using two different antibodies, ACE2 expression was confirmed in beta-cells and in pancreas microvasculature. Angiotensin I-converting enzyme type 2 expression was increased in pancreatic islets of T2D donors in comparison to ND controls alongside with a higher colocalisation rate between ACE2 and insulin using both anti-ACE2 antibodies. CD68+ cells tended to be increased in T2D pancreata, in line with higher ACE2 expression observed in serial sections. CONCLUSIONS: Higher ACE2 expression in T2D islets might increase their susceptibility to SARS-CoV-2 infection during COVID-19 in T2D patients, thus worsening glycometabolic outcomes and disease severity.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Humanos , Enzima Convertidora de Angiotensina 2 , COVID-19/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Peptidil-Dipeptidasa A
3.
Proteomes ; 10(2)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35645370

RESUMEN

In the era of multi-omic sciences, dogma on singular cause-effect in physio-pathological processes is overcome and system biology approaches have been providing new perspectives to see through. In this context, extracellular vesicles (EVs) are offering a new level of complexity, given their role in cellular communication and their activity as mediators of specific signals to target cells or tissues. Indeed, their heterogeneity in terms of content, function, origin and potentiality contribute to the cross-interaction of almost every molecular process occurring in a complex system. Such features make EVs proper biological systems being, therefore, optimal targets of omic sciences. Currently, most studies focus on dissecting EVs content in order to either characterize it or to explore its role in various pathogenic processes at transcriptomic, proteomic, metabolomic, lipidomic and genomic levels. Despite valuable results being provided by individual omic studies, the categorization of EVs biological data might represent a limit to be overcome. For this reason, a multi-omic integrative approach might contribute to explore EVs function, their tissue-specific origin and their potentiality. This review summarizes the state-of-the-art of EVs omic studies, addressing recent research on the integration of EVs multi-level biological data and challenging developments in EVs origin.

4.
Int J Mol Sci ; 23(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35457094

RESUMEN

Gestational diabetes mellitus (GDM) causes both maternal and fetal adverse outcomes. The deregulation of microRNAs (miRNAs) in GDM suggests their involvement in GDM pathogenesis and complications. Exosomes are extracellular vesicles (EVs) of endosomal origin, released via exocytosis into the extracellular compartment. Through EVs, miRNAs are delivered in distant target cells and are able to affect gene expression. In this study, miRNA expression was analyzed to find new miRNAs that could improve GDM classification and molecular characterization. MiRNA were profiled in total plasma and EVs in GDM patients and normal glucose tolerance (NGT) women. Samples were collected at third trimester of gestation from two diabetes centers. MiRNA expression was profiled in a discovery cohort using the multiplexed NanoString nCounter Human v3 miRNA. Validation analysis was performed in a second independent cohort using RT-qPCR. A set of miRNAs resulted to be differentially expressed (DE) in total plasma and EVs in GDM. Among them, total plasma miR-222-3p and miR-409-3p were validated in the independent cohort. MiR-222-3p levels correlated with fasting plasma glucose (FPG) (p < 0.001) and birth weight (p = 0.012), whereas miR-409-3p expression correlated with FPG (p < 0.001) and inversely with gestational age (p = 0.001). The major validated target genes of the deregulated miRNAs were consistently linked to type 2 diabetes and GDM pathophysiology. MiR-222-3p and miR-409-3p are two circulating biomarkers that could improve GDM classification power and act in the context of the molecular events leading to the metabolic alterations observed in GDM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , MicroARNs , Biomarcadores , Diabetes Gestacional/genética , Femenino , Homeostasis/genética , Humanos , MicroARNs/metabolismo , Embarazo
5.
Transl Res ; 247: 137-157, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35351622

RESUMEN

Type 2 diabetes (T2D), a chronic metabolic disease, has attained the status of a global epidemic with steadily increasing incidence worldwide. Improved diagnosis, stratification and prognosis of T2D patients and the development of more effective treatments are needed. In this era of personalized medicine, the discovery and evaluation of innovative circulating biomarkers can be an effective tool for better stratification, prognosis and therapeutic selection/management of T2D patients. MicroRNAs (miRNAs), a class of small non-coding RNAs that modulate gene expression, have been investigated as potential circulating biomarkers in T2D. Several studies have investigated the expression of circulating miRNAs in T2D patients from various biological fluids, including plasma and serum, and have demonstrated their potential as diagnostic and prognostic biomarkers, as well as biomarkers of response to therapy. In this review, we provide an overview of the current state of knowledge, focusing on circulating miRNAs that have been consistently expressed in at least two independent studies, in order to identify a set of consistent biomarker candidates in T2D. The expression levels of miRNAs, correlation with clinical parameters, functional roles of miRNAs and their potential as biomarkers are reported. A systematic literature search and assessment of studies led to the selection and review of 10 miRNAs (miR-126-3p, miR-223-3p, miR-21-5p, miR-15a-5p, miR-24-3p, miR-34a-5p, miR-146a-5p, miR-148a-3p, miR-30d-5p and miR-30c-5p). We also present technical challenges and our thoughts on the potential validation of circulating miRNAs and their application as biomarkers in the context of T2D.


Asunto(s)
MicroARN Circulante , Diabetes Mellitus Tipo 2 , MicroARNs , Biomarcadores , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Humanos , MicroARNs/metabolismo , Pronóstico
6.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502360

RESUMEN

Type 2 diabetes (T2D) represents one of the major health issues of this century. Despite the availability of an increasing number of anti-hyperglycemic drugs, a significant proportion of patients are inadequately controlled, thus highlighting the need for novel biomarkers to guide treatment selection. MicroRNAs (miRNAs) are small non-coding RNAs, proposed as useful diagnostic/prognostic markers. The aim of our study was to identify a miRNA signature occurring in responders to glucagon-like peptide 1 receptor agonists (GLP1-RA) therapy. We investigated the expression profile of eight T2D-associated circulating miRNAs in 26 prospectively evaluated diabetic patients in whom GLP1-RA was added to metformin. As expected, GLP1-RA treatment induced significant reductions of HbA1c and body weight, both after 6 and 12 months of therapy. Of note, baseline expression levels of the selected miRNAs revealed two distinct patient clusters: "high expressing" and "low expressing". Interestingly, a significantly higher percentage of patients in the high expression group reached the glycemic target after 12 months of treatment. Our findings suggest that the evaluation of miRNA expression could be used to predict the likelihood of an early treatment response to GLP1-RA and to select patients in whom to start such treatment, paving the way to a personalized medicine approach.


Asunto(s)
MicroARN Circulante/análisis , MicroARN Circulante/genética , Diabetes Mellitus Tipo 2/genética , Adulto , Biomarcadores Farmacológicos/sangre , Glucemia/análisis , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Humanos , Hipoglucemiantes/farmacología , Masculino , MicroARNs/sangre , MicroARNs/genética , Persona de Mediana Edad , Proyectos Piloto , Transcriptoma/genética
7.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299336

RESUMEN

The rising prevalence of metabolic diseases related to insulin resistance (IR) have stressed the urgent need of accurate and applicable tools for early diagnosis and treatment. In the last decade, non-coding RNAs (ncRNAs) have gained growing interest because of their potential role in IR modulation. NcRNAs are variable-length transcripts which are not translated into proteins but are involved in gene expression regulation. Thanks to their stability and easy detection in biological fluids, ncRNAs have been investigated as promising diagnostic and therapeutic markers in metabolic diseases, such as type 2 diabetes mellitus (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). Here we review the emerging role of ncRNAs in the development of IR and related diseases such as obesity, T2D and NAFLD, and summarize current evidence concerning their potential clinical application.


Asunto(s)
Resistencia a la Insulina/genética , ARN no Traducido/genética , Animales , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Hígado/metabolismo , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/genética , Obesidad/metabolismo , ARN no Traducido/metabolismo
8.
Front Immunol ; 12: 682948, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177928

RESUMEN

Extracellular vesicles (EVs) are generated by cells of origin through complex molecular mechanisms and released into extracellular environment. Hence, the presence of EVs has been described in multiple biological fluids and in most cases their molecular cargo, which includes non-coding RNAs (ncRNA), messenger RNAs (mRNA), and proteins, has been reported to modulate distinct biological processes. EVs release and their molecular cargo have been demonstrated to be altered in multiple diseases, including autoimmune diseases. Notably, numerous evidence showed a relevant crosstalk between immune system and interacting cells through specific EVs release. The crosstalk between insulin-producing pancreatic ß cells and immune system through EVs bidirectional trafficking has yet started to be deciphered, thus uncovering an intricate communication network underlying type 1 diabetes (T1D) pathogenesis. EVs can also be found in blood plasma or serum. Indeed, the assessment of circulating EVs cargo has been shown as a promising advance in the detection of reliable biomarkers of disease progression. Of note, multiple studies showed several specific cargo alterations of EVs collected from plasma/serum of subjects affected by autoimmune diseases, including T1D subjects. In this review, we discuss the recent literature reporting evidence of EVs role in autoimmune diseases, specifically focusing on the bidirectional crosstalk between pancreatic ß cells and immune system in T1D and highlight the relevant promising role of circulating EVs as disease biomarkers.


Asunto(s)
Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 1/metabolismo , Vesículas Extracelulares/metabolismo , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunomodulación , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Autoinmunidad , Transporte Biológico , Biomarcadores , Comunicación Celular , Diabetes Mellitus Tipo 1/terapia , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Exosomas , Homeostasis , Humanos , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo
9.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466949

RESUMEN

Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia mainly due to pancreatic ß cell death and/or dysfunction, caused by several types of stress such as glucotoxicity, lipotoxicity and inflammation. Different patho-physiological mechanisms driving ß cell response to these stresses are tightly regulated by microRNAs (miRNAs), a class of negative regulators of gene expression, involved in pathogenic mechanisms occurring in diabetes and in its complications. In this review, we aim to shed light on the most important miRNAs regulating the maintenance and the robustness of ß cell identity, as well as on those miRNAs involved in the pathogenesis of the two main forms of diabetes mellitus, i.e., type 1 and type 2 diabetes. Additionally, we acknowledge that the understanding of miRNAs-regulated molecular mechanisms is fundamental in order to develop specific and effective strategies based on miRNAs as therapeutic targets, employing innovative molecules.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Regulación de la Expresión Génica , Células Secretoras de Insulina/metabolismo , MicroARNs/genética , Animales , Humanos , Hiperglucemia/genética , Hiperglucemia/metabolismo , Secreción de Insulina/genética , Células Secretoras de Insulina/citología , Fenotipo
10.
Int J Mol Sci ; 21(19)2020 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-33023063

RESUMEN

We identified and compared secreted microRNA (miRNA) expression in aqueous humor (AH) and plasma samples among patients with: type 2 diabetes mellitus (T2D) complicated by non-proliferative diabetic retinopathy (DR) associated with diabetic macular edema (DME) (DME group: 12 patients); T2D patients without DR (D group: 8 patients); and non-diabetic patients (CTR group: 10 patients). Individual patient AH samples from five subjects in each group were profiled on TaqMan Low Density MicroRNA Array Cards. Differentially expressed miRNAs identified from profiling were then validated in single assay for all subjects. The miRNAs validated in AH were then evaluated in single assay in plasma. Gene Ontology (GO) analysis was conducted. From AH profiling, 119 mature miRNAs were detected: 86 in the DME group, 113 in the D group and 107 in the CTR group. miRNA underexpression in the DME group was confirmed in single assay for let-7c-5p, miR-200b-3p, miR-199a-3p and miR-365-3p. Of these four, miR-199a-3p and miR-365-3p were downregulated also in the plasma of the DME group. GO highlighted 54 validated target genes of miR-199a-3p, miR-200b-3p and miR-365-3p potentially implied in DME pathogenesis. Although more studies are needed, miR-200b-3p, let-7c-5p, miR-365-3p and miR-199a-3p represent interesting molecules in the study of DME pathogenesis.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Retinopatía Diabética/genética , Edema Macular/genética , MicroARNs/genética , Anciano , Anciano de 80 o más Años , Humor Acuoso/metabolismo , Diabetes Mellitus Tipo 2/patología , Retinopatía Diabética/patología , Femenino , Regulación de la Expresión Génica/genética , Humanos , Edema Macular/patología , Masculino , Persona de Mediana Edad
11.
Int J Mol Sci ; 20(24)2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31861156

RESUMEN

Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia as a consequence of pancreatic ß cell loss and/or dysfunction, also caused by oxidative stress. The molecular mechanisms involved inß cell dysfunction and in response to oxidative stress are also regulated by microRNAs (miRNAs). miRNAs are a class of negative gene regulators, which modulate pathologic mechanisms occurring in diabetes and its complications. Although several pharmacological therapies specifically targeting miRNAs have already been developed and brought to the clinic, most previous miRNA-based drug delivery methods were unable to target a specific miRNA in a single cell type or tissue, leading to important off-target effects. In order to overcome these issues, aptamers and nanoparticles have been described as non-cytotoxic vehicles for miRNA-based drug delivery. These approaches could represent an innovative way to specifically target and modulate miRNAs involved in oxidative stress in diabetes and its complications. Therefore, the aims of this review are: (i) to report the role of miRNAs involved in oxidative stress in diabetes as promising therapeutic targets; (ii) to shed light onto the new delivery strategies developed to modulate the expression of miRNAs in diseases.


Asunto(s)
Aptámeros de Nucleótidos/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Nanopartículas/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Animales , Aptámeros de Nucleótidos/administración & dosificación , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Terapia Molecular Dirigida/métodos
12.
Int J Mol Sci ; 19(12)2018 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-30469501

RESUMEN

The insulin signaling pathway is composed of a large number of molecules that positively or negatively modulate insulin specific signal transduction following its binding to the cognate receptor. Given the importance of the final effects of insulin signal transduction, it is conceivable that many regulators are needed in order to tightly control the metabolic or proliferative functional outputs. MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively modulate gene expression through their specific binding within the 3'UTR sequence of messenger RNA (mRNA), thus causing mRNA decoy or translational inhibition. In the last decade, miRNAs have been addressed as pivotal cellular rheostats which control many fundamental signaling pathways, including insulin signal transduction. Several studies demonstrated that multiple alterations of miRNAs expression or function are relevant for the development of insulin resistance in type 2 diabetes (T2D); such alterations have been highlighted in multiple insulin target organs including liver, muscles, and adipose tissue. Indirectly, miRNAs have been identified as modulators of inflammation-derived insulin resistance, by controlling/tuning the activity of innate immune cells in insulin target tissues. Here, we review main findings on miRNA functions as modulators of insulin signaling in physiologic- or in T2D insulin resistance- status. Additionally, we report the latest hypotheses of prospective therapies involving miRNAs as potential targets for future drugs in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , MicroARNs/genética , Transducción de Señal , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Humanos , MicroARNs/metabolismo , Tratamiento con ARN de Interferencia
13.
Int J Endocrinol ; 2018: 6380463, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29849620

RESUMEN

Gestational diabetes mellitus (GDM) is defined as any degree of carbohydrate intolerance, with onset or first recognition during second or third trimester of gestation. It is estimated that approximately 7% of all pregnancies are complicated by GDM and that its prevalence is rising all over the world. Thus, the screening for abnormal glucose levels is generally recommended as a routine component of care for pregnant women. However, additional biomarkers are needed in order to predict the onset or accurately monitor the status of gestational diabetes. Recently, microRNAs, a class of small noncoding RNAs demonstrated to modulate gene expression, have been proven to be secreted by cells of origin and can be found in many biological fluids such as serum or plasma. Such feature renders microRNAs as optimal biomarkers and sensors of in situ tissue alterations. Furthermore, secretion of microRNAs via exosomes has been reported to contribute to tissue cross talk, thus potentially represents, if disrupted, a mechanistic cause of tissue/cell dysfunction in a specific disease. In this review, we summarized the recent findings on circulating microRNAs and gestational diabetes mellitus with particular focus on the potential use of microRNAs as putative biomarkers of disease as well as a potential cause of GDM complications and ß cell dysfunction.

14.
Int J Mol Sci ; 19(4)2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29649109

RESUMEN

ß-cell dedifferentiation has been recently suggested as an additional mechanism contributing to type-1 and to type-2 diabetes pathogenesis. Moreover, several studies demonstrated that in vitro culture of native human pancreatic islets derived from non-diabetic donors resulted in the generation of an undifferentiated cell population. Additional evidence from in vitro human ß-cell lineage tracing experiments, demonstrated that dedifferentiated cells derive from ß-cells, thus representing a potential in vitro model of ß-cell dedifferentiation. Here, we report the microRNA expression profiles analysis of in vitro dedifferentiated islet cells in comparison to mature human native pancreatic islets. We identified 13 microRNAs upregulated and 110 downregulated in islet cells upon in vitro dedifferentiation. Interestingly, among upregulated microRNAs, we observed the activation of microRNA miR-302s cluster, previously defined as pluripotency-associated. Bioinformatic analysis indicated that miR-302s are predicted to target several genes involved in the control of ß-cell/epithelial phenotype maintenance; accordingly, such genes were downregulated upon human islet in vitro dedifferentiation. Moreover, we uncovered that cell-cell contacts are needed to maintain low/null expression levels of miR-302. In conclusion, we showed that miR-302 microRNA cluster genes are involved in in vitro dedifferentiation of human pancreatic islet cells and inhibits the expression of multiple genes involved in the maintenance of ß-cell mature phenotype.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Células Secretoras de Insulina/citología , Islotes Pancreáticos/citología , MicroARNs/genética , Regulación hacia Arriba , Adulto , Anciano , Anciano de 80 o más Años , Desdiferenciación Celular , Diferenciación Celular , Células Cultivadas , Humanos , Células Secretoras de Insulina/química , Islotes Pancreáticos/química , Persona de Mediana Edad
15.
Acta Diabetol ; 54(3): 265-281, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28039581

RESUMEN

AIMS: MicroRNAs are a class of small noncoding RNAs, which control gene expression by inhibition of mRNA translation. MicroRNAs are involved in the control of biological processes including cell differentiation. Here, we aim at characterizing microRNA expression profiles during differentiation of human induced pluripotent stem cells (hiPSCs) into insulin-producing cells. METHODS: We differentiated hiPSCs toward endocrine pancreatic lineage following a 18-day protocol. We analyzed genes and microRNA expression levels using RT real-time PCR and TaqMan microRNA arrays followed by bioinformatic functional analysis. RESULTS: MicroRNA expression profiles analysis of undifferentiated hiPSCs during pancreatic differentiation revealed that 347/768 microRNAs were expressed at least in one time point of all samples. We observed 18 microRNAs differentially expressed: 11 were upregulated (miR-9-5p, miR-9-3p, miR-10a, miR-99a-3p, miR-124a, miR-135a, miR-138, miR-149, miR-211, miR-342-3p and miR-375) and 7 downregulated (miR-31, miR-127, miR-143, miR-302c-3p, miR-373, miR-518b and miR-520c-3p) during differentiation into insulin-producing cells. Selected microRNAs were further evaluated during differentiation of Sendai-virus-reprogrammed hiPSCs using an improved endocrine pancreatic beta cell derivation protocol and, moreover, in differentiated NKX6.1+ sorted cells. Following Targetscan7.0 analysis of target genes of differentially expressed microRNAs and gene ontology classification, we found that such target genes belong to categories of major significance in pancreas organogenesis and development or exocytosis. CONCLUSIONS: We detected a specific hiPSCs microRNAs signature during differentiation into insulin-producing cells and demonstrated that differentially expressed microRNAs target several genes involved in pancreas organogenesis.


Asunto(s)
Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas/fisiología , Células Secretoras de Insulina/fisiología , MicroARNs/genética , Transcriptoma , Adulto , Anciano , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/fisiología , Análisis por Micromatrices , Persona de Mediana Edad , Páncreas/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-29312141

RESUMEN

Gestational diabetes mellitus (GDM) is characterized by insulin resistance accompanied by low/absent beta-cell compensatory adaptation to the increased insulin demand. Although the molecular mechanisms and factors acting on beta-cell compensatory response during pregnancy have been partially elucidated and reported, those inducing an impaired beta-cell compensation and function, thus evolving in GDM, have yet to be fully addressed. MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs, which negatively modulate gene expression through their sequence-specific binding to 3'UTR of mRNA target. They have been described as potent modulators of cell survival and proliferation and, furthermore, as orchestrating molecules of beta-cell compensatory response and function in diabetes. Moreover, it has been reported that miRNAs can be actively secreted by cells and found in many biological fluids (e.g., serum/plasma), thus representing both optimal candidate disease biomarkers and mediators of tissues crosstalk(s). Here, we analyzed the expression profiles of circulating miRNAs in plasma samples obtained from n = 21 GDM patients and from n = 10 non-diabetic control pregnant women (24-33 weeks of gestation) using TaqMan array microfluidics cards followed by RT-real-time PCR single assay validation. The results highlighted the upregulation of miR-330-3p in plasma of GDM vs non-diabetics. Furthermore, the analysis of miR-330-3p expression levels revealed a bimodally distributed GDM patients group characterized by high or low circulating miR-330 expression and identified as GDM-miR-330high and GDM-miR-330low. Interestingly, GDM-miR-330high subgroup retained lower levels of insulinemia, inversely correlated to miR-330-3p expression levels, and a significant higher rate of primary cesarean sections. Finally, miR-330-3p target genes analysis revealed major modulators of beta-cell proliferation and of insulin secretion, such as the experimentally validated genes E2F1 and CDC42 as well as AGT2R2, a gene involved in the differentiation of mature beta-cells. In conclusion, we demonstrated that plasma miR-330-3p could be of help in identifying GDM patients with potential worse gestational diabetes outcome; in GDM, miR-330-3p may directly be transferred from plasma to beta-cells thus modulating key target genes involved in proliferation, differentiation, and insulin secretion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...