Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2018): 20232816, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38471544

RESUMEN

Beneficial reversals of dominance reduce the costs of genetic trade-offs and can enable selection to maintain genetic variation for fitness. Beneficial dominance reversals are characterized by the beneficial allele for a given context (e.g. habitat, developmental stage, trait or sex) being dominant in that context but recessive where deleterious. This context dependence at least partially mitigates the fitness consequence of heterozygotes carrying one non-beneficial allele for their context and can result in balancing selection that maintains alternative alleles. Dominance reversals are theoretically plausible and are supported by mounting empirical evidence. Here, we highlight the importance of beneficial dominance reversals as a mechanism for the mitigation of genetic conflict and review the theory and empirical evidence for them. We identify some areas in need of further research and development and outline three methods that could facilitate the identification of antagonistic genetic variation (dominance ordination, allele-specific expression and allele-specific ATAC-Seq (assay for transposase-accessible chromatin with sequencing)). There is ample scope for the development of new empirical methods as well as reanalysis of existing data through the lens of dominance reversals. A greater focus on this topic will expand our understanding of the mechanisms that resolve genetic conflict and whether they maintain genetic variation.


Asunto(s)
Variación Genética , Selección Genética , Fenotipo , Heterocigoto , Alelos , Modelos Genéticos , Aptitud Genética
2.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961082

RESUMEN

Parasites harm host fitness and are pervasive agents of natural selection. Host defensive traits in natural populations typically show genetic variation, which may be maintained when parasite resistance imposes fitness costs on the host coupled with variability in parasite prevalence in space and/or time. Previously we demonstrated significant evolutionary responses to artificial selection for increasing behavioral immunity to Gamasodes queenslandicus mites in replicate lines of Drosophila melanogaster . Here, we report transcriptional shifts in metabolic processes between selected and control fly lines based on RNA-seq analyses. We also show decreased starvation resistance and increased use of nutrient reserves in flies from mite-resistant lines. Additionally, mite-resistant lines exhibited increased behavioral activity, reduced sleep and elevated oxygen consumption under conditions of darkness. The link between resistance and sleep was confirmed in an independent panel of D. melanogaster genetic lines exhibiting variable sleep durations, showing a positive correlation between mite resistance and reduced sleep. Experimentally restraining the activity of artificially selected mite-resistant flies during exposure to parasites under dark conditions reduced their resistance advantage relative to control flies. The results suggest that ectoparasite resistance in this system involves increased dark-condition activity and metabolic gene expression at the expense of nutrient reserves and starvation resistance.

3.
Evolution ; 77(6): 1289-1302, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36848265

RESUMEN

Sexual selection and sexual antagonism are important drivers of eco-evolutionary processes. The evolution of traits shaped by these processes depends on their genetic architecture, which remains poorly studied. Here, implementing a quantitative genetics approach using diallel crosses of the bulb mite, Rhizoglyphus robini, we investigated the genetic variance that underlies a sexually selected weapon that is dimorphic among males and female fecundity. Previous studies indicated that a negative genetic correlation between these two traits likely exists. We found male morph showed considerable additive genetic variance, which is unlikely to be explained solely by mutation-selection balance, indicating the likely presence of large-effect loci. However, a significant magnitude of inbreeding depression also indicates that morph expression is likely to be condition-dependent to some degree and that deleterious recessives can simultaneously contribute to morph expression. Female fecundity also showed a high degree of inbreeding depression, but the variance in female fecundity was mostly explained by epistatic effects, with very little contribution from additive effects. We found no significant genetic correlation, nor any evidence for dominance reversal, between male morph and female fecundity. The complex genetic architecture underlying male morph and female fecundity in this system has important implications for our understanding of the evolutionary interplay between purifying selection and sexually antagonistic selection.


Asunto(s)
Acaridae , Ácaros , Animales , Femenino , Masculino , Mutación , Ácaros/genética , Fenotipo , Selección Genética
4.
Evol Lett ; 5(4): 328-343, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34367659

RESUMEN

Theory predicts that the ability of selection and recombination to purge mutation load is enhanced if selection against deleterious genetic variants operates more strongly in males than females. However, direct empirical support for this tenet is limited, in part because traditional quantitative genetic approaches allow dominance and intermediate-frequency polymorphisms to obscure the effects of the many rare and partially recessive deleterious alleles that make up the main part of a population's mutation load. Here, we exposed the partially recessive genetic load of a population of Callosobruchus maculatus seed beetles via successive generations of inbreeding, and quantified its effects by measuring heterosis-the increase in fitness experienced when masking the effects of deleterious alleles by heterozygosity-in a fully factorial sex-specific diallel cross among 16 inbred strains. Competitive lifetime reproductive success (i.e., fitness) was measured in male and female outcrossed F1s as well as inbred parental "selfs," and we estimated the 4 × 4 male-female inbred-outbred genetic covariance matrix for fitness using Bayesian Markov chain Monte Carlo simulations of a custom-made general linear mixed effects model. We found that heterosis estimated independently in males and females was highly genetically correlated among strains, and that heterosis was strongly negatively genetically correlated to outbred male, but not female, fitness. This suggests that genetic variation for fitness in males, but not in females, reflects the amount of (partially) recessive deleterious alleles segregating at mutation-selection balance in this population. The population's mutation load therefore has greater potential to be purged via selection in males. These findings contribute to our understanding of the prevalence of sexual reproduction in nature and the maintenance of genetic variation in fitness-related traits.

5.
Proc Biol Sci ; 288(1954): 20211068, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34229496

RESUMEN

Our understanding of coevolution between male genitalia and female traits remains incomplete. This is perhaps especially true for genital traits that cause internal injuries in females, such as the spiny genitalia of seed beetles where males with relatively long spines enjoy a high relative fertilization success. We report on a new set of experiments, based on extant selection lines, aimed at assessing the effects of long male spines on females in Callosobruchus maculatus. We first draw on an earlier study using microscale laser surgery, and demonstrate that genital spines have a direct negative (sexually antagonistic) effect on female fecundity. We then ask whether artificial selection for long versus short spines resulted in direct or indirect effects on female lifetime offspring production. Reference females mating with males from long-spine lines had higher offspring production, presumably due to an elevated allocation in males to those ejaculate components that are beneficial to females. Remarkably, selection for long male genital spines also resulted in an evolutionary increase in female offspring production as a correlated response. Our findings thus suggest that female traits that affect their response to male spines are both under direct selection to minimize harm but are also under indirect selection (a good genes effect), consistent with the evolution of mating and fertilization biases being affected by several simultaneous processes.


Asunto(s)
Escarabajos , Animales , Evolución Biológica , Escarabajos/genética , Femenino , Genitales , Genitales Masculinos , Masculino , Reproducción , Selección Genética , Conducta Sexual Animal
6.
Proc Biol Sci ; 288(1946): 20202908, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33715431

RESUMEN

A central problem in evolutionary biology is to identify the forces that maintain genetic variation for fitness in natural populations. Sexual antagonism, in which selection favours different variants in males and females, can slow the transit of a polymorphism through a population or can actively maintain fitness variation. The amount of sexually antagonistic variation to be expected depends in part on the genetic architecture of sexual dimorphism, about which we know relatively little. Here, we used a multivariate quantitative genetic approach to examine the genetic architecture of sexual dimorphism in a scent-based fertilization syndrome of the moss Ceratodon purpureus. We found sexual dimorphism in numerous traits, consistent with a history of sexually antagonistic selection. The cross-sex genetic correlations (rmf) were generally heterogeneous with many values indistinguishable from zero, which typically suggests that genetic constraints do not limit the response to sexually antagonistic selection. However, we detected no differentiation between the female- and male-specific trait (co)variance matrices (Gf and Gm, respectively), meaning the evolution of sexual dimorphism may be constrained. The cross-sex cross-trait covariance matrix B contained both symmetric and asymmetric elements, indicating that the response to sexually antagonistic or sexually concordant selection, and the constraint to sexual dimorphism, are highly dependent on the traits experiencing selection. The patterns of genetic variances and covariances among these fitness components is consistent with partly sex-specific genetic architectures having evolved in order to partially resolve multivariate genetic constraints (i.e. sexual conflict), enabling the sexes to evolve towards their sex-specific multivariate trait optima.


Asunto(s)
Bryopsida , Caracteres Sexuales , Evolución Biológica , Femenino , Variación Genética , Masculino , Fenotipo , Selección Genética
7.
PLoS Biol ; 16(12): e2006810, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30533008

RESUMEN

The maintenance of genetic variance in fitness represents one of the most longstanding enigmas in evolutionary biology. Sexually antagonistic (SA) selection may contribute substantially to maintaining genetic variance in fitness by maintaining alternative alleles with opposite fitness effects in the two sexes. This is especially likely if such SA loci exhibit sex-specific dominance reversal (SSDR)-wherein the allele that benefits a given sex is also dominant in that sex-which would generate balancing selection and maintain stable SA polymorphisms for fitness. However, direct empirical tests of SSDR for fitness are currently lacking. Here, we performed a full diallel cross among isogenic strains derived from a natural population of the seed beetle Callosobruchus maculatus that is known to exhibit SA genetic variance in fitness. We measured sex-specific competitive lifetime reproductive success (i.e., fitness) in >500 sex-by-genotype F1 combinations and found that segregating genetic variation in fitness exhibited pronounced contributions from dominance variance and sex-specific dominance variance. A closer inspection of the nature of dominance variance revealed that the fixed allelic variation captured within each strain tended to be dominant in one sex but recessive in the other, revealing genome-wide SSDR for SA polymorphisms underlying fitness. Our findings suggest that SA balancing selection could play an underappreciated role in maintaining fitness variance in natural populations.


Asunto(s)
Escarabajos/genética , Aptitud Genética/genética , Selección Genética/genética , Alelos , Animales , Evolución Biológica , Femenino , Frecuencia de los Genes/genética , Variación Genética/genética , Genotipo , Masculino , Modelos Genéticos , Fenotipo , Polimorfismo Genético/genética , Reproducción/genética , Caracteres Sexuales , Factores Sexuales
8.
Proc Biol Sci ; 284(1866)2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29118134

RESUMEN

Mutation has a fundamental influence over evolutionary processes, but how evolutionary processes shape mutation rate remains less clear. In asexual unicellular organism, increased mutation rates have been observed in stressful environments and the reigning paradigm ascribes this increase to selection for evolvability. However, this explanation does not apply in sexually reproducing species, where little is known about how the environment affects mutation rate. Here we challenged experimental lines of seed beetle, evolved at ancestral temperature or under simulated climate warming, to repair induced mutations at ancestral and stressful temperature. Results show that temperature stress causes individuals to pass on a greater mutation load to their grand-offspring. This suggests that stress-induced mutation rates, in unicellular and multicellular organisms alike, can result from compromised germline DNA repair in low condition individuals. Moreover, lines adapted to simulated climate warming had evolved increased longevity at the cost of reproduction, and this allocation decision improved germline repair. These results suggest that mutation rates can be modulated by resource allocation trade-offs encompassing life-history traits and the germline and have important implications for rates of adaptation and extinction as well as our understanding of genetic diversity in multicellular organisms.


Asunto(s)
Escarabajos/fisiología , Mutación de Línea Germinal , Rasgos de la Historia de Vida , Tasa de Mutación , Aclimatación , Animales , Cambio Climático , Femenino , Longevidad , Masculino , Reproducción
9.
BMC Evol Biol ; 17(1): 134, 2017 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-28606137

RESUMEN

BACKGROUND: There is theoretical and empirical evidence for strong sexual selection in males having positive effects on population viability by serving to purify the genome of its mutation load at a low demographic cost. However, there is also theoretical and empirical evidence for negative effects of sexual selection on female fitness, and therefore population viability, known as the gender load. This can take the form of sexually antagonistic (SA) genetic variation where alleles with a selective advantage in males pose a detriment to female fitness, and vice versa. Here, using seed beetles, we shed light on a previously unexplored manifestation of the gender load: the effect of SA genetic variation on tolerance to inbreeding. RESULTS: We found that genotypes encoding high male, but low female fitness exhibited significantly greater rates of extinction upon enforced inbreeding relative to genotypes encoding high female but low male fitness. Also, genotypes encoding low fitness in both sexes exhibited greater rates of extinction relative to generally high-fitness genotypes (though marginally non-significant), an expected finding attributable to variation in mutation load across genotypes. Despite follow-up investigations aiming to identify the mechanism(s) underlying these findings, it remains unclear whether the gender load and the mutation load have independent consequences for tolerance to inbreeding, or whether these two types of genetic architecture interact epistatically to render male-benefit genetic variation relatively intolerant to inbreeding. CONCLUSIONS: Regardless of the underlying mechanism(s), our results show that male-benefit/female-detriment SA genetic variation poses a previously unseen detriment to population viability due to its elevated vulnerability to inbreeding/homozygosity. This suggests that sexual selection in the context of SA genetic variance for fitness may enhance the gender load on population viability more than previously appreciated, due to selecting for male-benefit SA genetic variation that engenders lineages to extinction upon inbreeding. We note that our results imply that SA alleles that are sexually selected for in males may be underrepresented or even lacking in panels of inbred lines.


Asunto(s)
Escarabajos/genética , Escarabajos/fisiología , Endogamia , Alelos , Animales , Femenino , Variación Genética , Genotipo , Masculino , Mutación , Selección Genética , Caracteres Sexuales
10.
Am Nat ; 188(4): E98-E112, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27622882

RESUMEN

The evolution of male traits that inflict direct harm on females during mating interactions can result in a so-called tragedy of the commons, where selfish male strategies depress population viability. This tragedy of the commons can be magnified by intralocus sexual conflict (IaSC) whenever alleles that reduce fecundity when expressed in females spread in the population because of their benefits in males. We evaluated this prediction by detailed phenotyping of 73 isofemale lines of the seed beetle Callosobruchus maculatus. We quantified genetic variation in life history and morphology, as well as associated covariance in male and female adult reproductive success. In parallel, we created replicated artificial populations of each line and measured their productivity. Genetic constraints limited independent trait expression in the sexes, and we identified several instances of sexually antagonistic covariance between traits and fitness, signifying IaSC. Population productivity was strongly positively correlated to female adult reproductive success but uncorrelated with male reproductive success. Moreover, male (female) phenotypic optima for several traits under sexually antagonistic selection were exhibited by the genotypes with the lowest (highest) population productivity. Our study forms a direct link between individual-level sex-specific selection and population demography and places life-history traits at the epicenter of these dynamics.


Asunto(s)
Escarabajos , Selección Genética , Caracteres Sexuales , Animales , Femenino , Masculino , Fenotipo , Conducta Sexual
11.
BMC Evol Biol ; 16: 88, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-27175796

RESUMEN

BACKGROUND: Intralocus sexual conflict, arising from selection for different alleles at the same locus in males and females, imposes a constraint on sex-specific adaptation. Intralocus sexual conflict can be alleviated by the evolution of sex-limited genetic architectures and phenotypic expression, but pleiotropic constraints may hinder this process. Here, we explored putative intralocus sexual conflict and genetic (co)variance in a poorly understood behavior with near male-limited expression. Same-sex sexual behaviors (SSBs) generally do not conform to classic evolutionary models of adaptation but are common in male animals and have been hypothesized to result from perception errors and selection for high male mating rates. However, perspectives incorporating sex-specific selection on genes shared by males and females to explain the expression and evolution of SSBs have largely been neglected. RESULTS: We performed two parallel sex-limited artificial selection experiments on SSB in male and female seed beetles, followed by sex-specific assays of locomotor activity and male sex recognition (two traits hypothesized to be functionally related to SSB) and adult reproductive success (allowing us to assess fitness consequences of genetic variance in SSB and its correlated components). Our experiments reveal both shared and sex-limited genetic variance for SSB. Strikingly, genetically correlated responses in locomotor activity and male sex-recognition were associated with sexually antagonistic fitness effects, but these effects differed qualitatively between male and female selection lines, implicating intralocus sexual conflict at both male- and female-specific genetic components underlying SSB. CONCLUSIONS: Our study provides experimental support for the hypothesis that widespread pleiotropy generates pervasive intralocus sexual conflict governing the expression of SSBs, suggesting that SSB in one sex can occur due to the expression of genes that carry benefits in the other sex.


Asunto(s)
Escarabajos/genética , Alelos , Animales , Evolución Molecular , Femenino , Genes de Insecto , Pleiotropía Genética , Variación Genética , Masculino , Fenotipo , Reproducción , Selección Genética , Caracteres Sexuales , Conducta Sexual
12.
Evolution ; 68(8): 2184-96, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24766035

RESUMEN

Intralocus sexual conflict (IaSC) occurs when selection at a given locus favors different alleles in males and females, placing a fundamental constraint on adaptation. However, the relative impact of IaSC on adaptation may become reduced in stressful environments that expose conditionally deleterious mutations to selection. The genetic correlation for fitness between males and females (rMF ) provides a quantification of IaSC across the genome. We compared IaSC at a benign (29°C) and a stressful (36°C) temperature by estimating rMF s in two natural populations of the seed beetle Callosobruchus maculatus using isofemale lines. In one population, we found substantial IaSC under benign conditions signified by a negative rMF (-0.51) and, as predicted, a significant reduction of IaSC under stress signified by a reversed and positive rMF (0.21). The other population displayed low IaSC at both temperatures (rMF : 0.38; 0.40). In both populations, isofemale lines harboring alleles beneficial to males but detrimental to females at benign conditions tended to show overall low fitness under stress. These results offer support for low IaSC under stress and suggest that environmentally sensitive and conditionally deleterious alleles that are sexually selected in males mediate changes in IaSC. We discuss implications for adaptive evolution in sexually reproducing populations.


Asunto(s)
Adaptación Fisiológica/genética , Escarabajos/genética , Aptitud Genética , Estrés Fisiológico , Alelos , Animales , Escarabajos/fisiología , Femenino , Masculino , Conducta Sexual Animal , Temperatura
13.
Evolution ; 66(8): 2637-45, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22834760

RESUMEN

That male genital morphology evolves via postcopulatory sexual selection is a widely held view. In contrast, the precopulatory sexual selection hypothesis for genital evolution has received less attention. Here, we test the hypothesis that male genital spines of Drosophila ananassae promote competitive male copulation success. Using laser surgery to manipulate trait size, we demonstrate that incremental reductions of spine length progressively reduce male copulation success: males without spines failed entirely to copulate because of an inability to couple the genitalia together, whereas males with halfway ablated and blunted spines suffered reductions in copulation success of 87% and 13%, respectively. The decrease in copulation success resulting from spine length reduction was markedly stronger in sexually competitive environments than in noncompetitive environments, and females expressed resistance behaviors similarly toward competing male treatments, demonstrating directly the role of genital spines in promoting competitive copulation success. Because these spines are widespread within Drosophila, and because genital traits with precopulatory function are being discovered in a growing number of animal taxa, precopulatory sexual selection may have a more pervasive role in genital evolution than previously recognized.


Asunto(s)
Copulación , Drosophila/anatomía & histología , Drosophila/fisiología , Animales , Conducta Competitiva , Femenino , Genitales Masculinos/anatomía & histología , Genitales Masculinos/fisiología , Masculino , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...