Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 9(11): e112112, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25389758

RESUMEN

The mesothelium, the lining of the coelomic cavities, and the urothelium, the inner lining of the urinary drainage system, are highly specialized epithelia that protect the underlying tissues from mechanical stress and seal them from the overlying fluid space. The development of these epithelia from simple precursors and the molecular characteristics of the mature tissues are poorly analyzed. Here, we show that uroplakin 3B (Upk3b), which encodes an integral membrane protein of the tetraspanin superfamily, is specifically expressed both in development as well as under homeostatic conditions in adult mice in the mesothelia of the body cavities, i.e., the epicardium and pericardium, the pleura and the peritoneum, and in the urothelium of the urinary tract. To analyze Upk3b function, we generated a creERT2 knock-in allele by homologous recombination in embryonic stem cells. We show that Upk3bcreERT2 represents a null allele despite the lack of creERT2 expression from the mutated locus. Morphological, histological and molecular analyses of Upk3b-deficient mice did not detect changes in differentiation or integrity of the urothelium and the mesothelia that cover internal organs. Upk3b is coexpressed with the closely related Upk3a gene in the urothelium but not in the mesothelium, leaving the possibility of a functional redundancy between the two genes in the urothelium only.


Asunto(s)
Epitelio/embriología , Uroplaquina III/metabolismo , Urotelio/embriología , Alelos , Animales , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epitelio/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Técnicas de Sustitución del Gen , Heterocigoto , Riñón/patología , Masculino , Ratones , Microscopía Confocal , Uréter/patología , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Vejiga Urinaria/ultraestructura , Uroplaquina III/genética , Urotelio/metabolismo
2.
PLoS One ; 7(9): e45100, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984617

RESUMEN

The pleuropericardial membranes are fibro-serous walls that separate the pericardial and pleural cavities and anchor the heart inside the mediastinum. Partial or complete absence of pleuropericardial membranes is a rare human disease, the etiology of which is poorly understood. As an attempt to better understand these defects, we wished to analyze the cellular and molecular mechanisms directing the separation of pericardial and pleural cavities by pleuropericardial membranes in the mouse. We found by histological analyses that both in Tbx18- and Wt1-deficient mice the pleural and pericardial cavities communicate due to a partial absence of the pleuropericardial membranes in the hilus region. We trace these defects to a persisting embryonic connection between these cavities, the pericardioperitoneal canals. Furthermore, we identify mesenchymal ridges in the sinus venosus region that tether the growing pleuropericardial membranes to the hilus of the lung, and thus, close the pericardioperitoneal canals. In Tbx18-deficient embryos these mesenchymal ridges are not established, whereas in Wt1-deficient embryos the final fusion process between these tissues and the body wall does not occur. We suggest that this fusion is an active rather than a passive process, and discuss the interrelation between closure of the pericardioperitoneal canals, lateral release of the pleuropericardial membranes from the lateral body wall, and sinus horn development.


Asunto(s)
Corazón/embriología , Pericardio/anomalías , Proteínas de Dominio T Box/deficiencia , Proteínas WT1/deficiencia , Animales , Proliferación Celular , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Pericardio/metabolismo , Embarazo , Proteínas de Dominio T Box/genética , Factores de Tiempo , Proteínas WT1/genética
3.
Cell Mol Life Sci ; 69(8): 1377-89, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22130515

RESUMEN

A key step in heart development is the coordinated development of the atrioventricular canal (AVC), the constriction between the atria and ventricles that electrically and physically separates the chambers, and the development of the atrioventricular valves that ensure unidirectional blood flow. Using knock-out and inducible overexpression mouse models, we provide evidence that the developmentally important T-box factors Tbx2 and Tbx3, in a functionally redundant manner, maintain the AVC myocardium phenotype during the process of chamber differentiation. Expression profiling and ChIP-sequencing analysis of Tbx3 revealed that it directly interacts with and represses chamber myocardial genes, and induces the atrioventricular pacemaker-like phenotype by activating relevant genes. Moreover, mutant mice lacking 3 or 4 functional alleles of Tbx2 and Tbx3 failed to form atrioventricular cushions, precursors of the valves and septa. Tbx2 and Tbx3 trigger development of the cushions through a regulatory feed-forward loop with Bmp2, thus providing a mechanism for the co-localization and coordination of these important processes in heart development.


Asunto(s)
Cojinetes Endocárdicos/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Dominio T Box/metabolismo , Animales , Secuencia de Bases , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Cojinetes Endocárdicos/metabolismo , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Miocardio/metabolismo , Ratas , Proteínas de Dominio T Box/genética , Regulación hacia Arriba
4.
Circ Res ; 108(7): 813-23, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21252157

RESUMEN

RATIONALE: The embryonic epicardium plays a crucial role in the formation of the coronary vasculature and in myocardial development, yet the exact contribution of epicardium-derived cells (EPDCs) to the vascular and connective tissue of the heart, and the factors that regulate epicardial differentiation, are insufficiently understood. OBJECTIVE: To define the role of Notch signaling in murine epicardial development. METHODS AND RESULTS: Using in situ hybridization and RT-PCR analyses, we detected expression of a number of Notch receptor and ligand genes in early epicardial development, as well as during formation of coronary arteries. Mice with epicardial deletion of Rbpj, the unique intracellular mediator of Notch signaling, survived to adulthood and exhibited enlarged coronary venous and arterial beds. Using a Tbx18-based genetic lineage tracing system, we show that EPDCs give rise to fibroblasts and coronary smooth muscle cells (SMCs) but not to endothelial cells in the wild type, whereas in Rbpj-deficient embryos EPDCs form and surround the developing arteries but fail to differentiate into SMCs. Conditional activation of Notch signaling results in premature SMC differentiation of epicardial cells and prevents coronary angiogenesis. We further show that Notch signaling regulates, and cooperates with transforming growth factor ß signaling in SM differentiation of EPDCs. CONCLUSIONS: Notch signaling is a crucial regulator of SM differentiation of EPDCs, and thus, of formation of a functional coronary system.


Asunto(s)
Diferenciación Celular/fisiología , Miocitos del Músculo Liso/citología , Pericardio/citología , Receptores Notch/fisiología , Transducción de Señal/fisiología , Animales , Aterosclerosis/fisiopatología , Células Cultivadas , Vasos Coronarios/citología , Vasos Coronarios/fisiopatología , Femenino , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/deficiencia , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/fisiología , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Pericardio/embriología , Pericardio/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/fisiología , Receptores Notch/genética , Factor de Crecimiento Transformador beta/fisiología
5.
Circ Res ; 106(7): 1212-20, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20185795

RESUMEN

RATIONALE: The cardiac venous pole is a common focus of congenital malformations and atrial arrhythmias, yet little is known about the cellular and molecular mechanisms that regulate its development. The systemic venous return myocardium (sinus node and sinus horns) forms only late in cardiogenesis from a pool of pericardial mesenchymal precursor cells. OBJECTIVE: To analyze the cellular and molecular mechanisms directing the formation of the fetal sinus horns. METHODS AND RESULTS: We analyzed embryos deficient for the Wt1 (Wilms tumor 1) gene and observed a failure to form myocardialized sinus horns. Instead, the cardinal veins become embedded laterally in the pleuropericardial membranes that remain tethered to the lateral body wall by the persisting subcoelomic mesenchyme, a finding that correlates with decreased apoptosis in this region. We show by expression analysis and lineage tracing studies that Wt1 is expressed in the subcoelomic mesenchyme surrounding the cardinal veins, but that this Wt1-positive mesenchyme does not contribute cells to the sinus horn myocardium. Expression of the Raldh2 (aldehyde dehydrogenase family 1, subfamily A2) gene was lost from this mesenchyme in Wt1(-/-) embryos. Phenotypic analysis of Raldh2 mutant mice rescued from early cardiac defects by retinoic acid food supply revealed defects of the venous pole and pericardium highly similar to those of Wt1(-/-) mice. CONCLUSIONS: Pericardium and sinus horn formation are coupled and depend on the expansion and correct temporal release of pleuropericardial membranes from the underlying subcoelomic mesenchyme. Wt1 and downstream Raldh2/retinoic acid signaling are crucial regulators of this process. Thus, our results provide novel insight into the genetic and cellular pathways regulating the posterior extension of the mammalian heart and the formation of its coelomic lining.


Asunto(s)
Seno Coronario/metabolismo , Mesodermo/metabolismo , Pericardio/metabolismo , Pleura/metabolismo , Transducción de Señal , Nodo Sinoatrial/metabolismo , Tretinoina/metabolismo , Proteínas WT1/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Animales , Apoptosis , Linaje de la Célula , Seno Coronario/embriología , Muerte Fetal , Regulación del Desarrollo de la Expresión Génica , Genotipo , Edad Gestacional , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación , Pericardio/embriología , Fenotipo , Pleura/embriología , Transducción de Señal/genética , Nodo Sinoatrial/embriología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Proteínas WT1/deficiencia , Proteínas WT1/genética
6.
Circ Res ; 105(5): 442-52, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19661464

RESUMEN

RATIONALE: T-box transcription factors play critical roles in the coordinated formation of the working chambers and the atrioventricular canal (AVC). Tbx2 patterns embryonic myocardial cells to form the AVC and suppresses their differentiation into chamber myocardium. Tbx20-deficient embryos, which fail to form chambers, ectopically express Tbx2 throughout the entire heart tube, providing a potential mechanism for the function of Tbx20 in chamber differentiation. OBJECTIVE: To identify the mechanism of Tbx2 suppression by Tbx20 and to investigate the involvement of Tbx2 in Tbx20-mediated chamber formation. METHODS AND RESULTS: We generated Tbx20 and Tbx2 single and double knockout embryos and observed that loss of Tbx2 did not rescue the Tbx20-deficient heart from failure to form chambers. However, Tbx20 is required to suppress Tbx2 in the developing chambers, a prerequisite to localize its strong differentiation-inhibiting activity to the AVC. We identified a bone morphogenetic protein (Bmp)/Smad-dependent Tbx2 enhancer conferring AVC-restricted expression and Tbx20-dependent chamber suppression of Tbx2 in vivo. Unexpectedly, we found in transfection and localization studies in vitro that both Tbx20 and mutant isoforms of Tbx20 unable to bind DNA attenuate Bmp/Smad-dependent activation of Tbx2 by binding Smad1 and Smad5 and sequestering them from Smad4. CONCLUSIONS: Our data suggest that Tbx20 directly interferes with Bmp/Smad signaling to suppress Tbx2 expression in the chambers, thereby confining Tbx2 expression to the prospective AVC region.


Asunto(s)
Diferenciación Celular , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Cojinetes Endocárdicos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Células HeLa , Atrios Cardíacos/embriología , Ventrículos Cardíacos/embriología , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas , Transducción de Señal/genética , Proteína Smad1/metabolismo , Proteína Smad4/metabolismo , Proteína Smad5/metabolismo , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Activación Transcripcional , Transfección
7.
Nature ; 458(7240): E8-9; discussion E9-10, 2009 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-19369973

RESUMEN

Uncovering the origins of myocardial cells is important for understanding and treating heart diseases. Cai et al. suggest that Tbx18-expressing epicardium provides a substantial contribution to myocytes in the ventricular septum and the atrial and ventricular walls. Here we show that the T-box transcription factor gene 18 (Tbx18) itself is expressed in the myocardium, showing that their genetic lineage tracing system does not allow conclusions of an epicardial origin of cardiomyocytes in vivo to be drawn.


Asunto(s)
Linaje de la Célula , Miocardio/citología , Pericardio/citología , Células Madre/citología , Células Madre/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Diferenciación Celular , Colorantes Fluorescentes , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Hibridación in Situ , Integrasas/genética , Integrasas/metabolismo , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Pericardio/embriología , ARN/análisis , ARN/genética , Reproducibilidad de los Resultados , Proteínas de Dominio T Box/genética
8.
Circ Res ; 104(3): 388-97, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19096026

RESUMEN

The sinus node (or sinoatrial node [SAN]), the pacemaker of the heart, is a functionally and structurally heterogeneous tissue, which consists of a large "head" within the right caval vein myocardium and a "tail" along the terminal crest. Here, we investigated its cellular origin and mechanism of formation. Using genetic lineage analysis and explant assays, we identified T-box transcription factor Tbx18-expressing mesenchymal progenitors in the inflow tract region that differentiate into pacemaker myocardium to form the SAN. We found that the head and tail represent separate regulatory domains expressing distinctive gene programs. Tbx18 is required to establish the large head structure, as seen by the existence of a very small but still functional tail piece in Tbx18-deficient fetuses. In contrast, Tbx3-deficient embryos formed a morphologically normal SAN, which, however, aberrantly expressed Cx40 and other atrial genes, demonstrating that Tbx3 controls differentiation of SAN head and tail cardiomyocytes but also demonstrating that Tbx3 is not required for the formation of the SAN structure. Our data establish a functional order for Tbx18 and Tbx3 in SAN formation, in which Tbx18 controls the formation of the SAN head from mesenchymal precursors, on which Tbx3 subsequently imposes the pacemaker gene program.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Nodo Sinoatrial/citología , Nodo Sinoatrial/embriología , Proteínas de Dominio T Box/genética , Animales , Diferenciación Celular/fisiología , Conexinas/genética , Técnicas de Sustitución del Gen , Corazón/embriología , Atrios Cardíacos/citología , Atrios Cardíacos/embriología , Células Madre Mesenquimatosas/citología , Ratones , Ratones Transgénicos , Miocardio/citología , Proteínas de Dominio T Box/metabolismo , Proteína alfa-5 de Unión Comunicante
9.
Nat Cell Biol ; 11(1): 46-55, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19079247

RESUMEN

Secreted Frizzled-related proteins (sFRPs) have emerged as key regulators of a wide range of developmental and disease processes. Most of the known functions of mammalian sFRPs have been attributed to their ability to antagonize Wnt signalling. Recently however, Xenopus laevis and zebrafish sFRP, Sizzled, was shown to function as an antagonist of Chordin processing by Tolloid-like metalloproteinases. This has led to the proposal that sFRPs may function as evolutionarily conserved antagonists of chordinase activities of this class of proteinases. In contrast to this proposal, we show here that the mammalian sFRP, sFRP2, does not affect Chordin processing, but instead, can serve as a direct enhancer of procollagen C proteinase activity of Tolloid-like metalloproteinases. We also show that the level of fibrosis, in which procollagen processing by Tolloid-like proteinases has a rate-limiting role, is markedly reduced in Sfrp2-null mice subjected to myocardial infarction. Importantly, this reduced level of fibrosis is accompanied by significantly improved cardiac function. This study thus uncovers a function for sFRP2 and a potential therapeutic application for sFRP2 antagonism in controlling fibrosis in the infarcted heart.


Asunto(s)
Proteína Morfogenética Ósea 1/metabolismo , Fibrosis/metabolismo , Proteínas de la Membrana/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Animales , Células Cultivadas , Colágeno/biosíntesis , Colágeno/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Fibrosis/etiología , Fibrosis/fisiopatología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Contracción Muscular/genética , Infarto del Miocardio/complicaciones , Infarto del Miocardio/fisiopatología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Recuperación de la Función/fisiología , Metaloproteinasas Similares a Tolloid/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...