Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 2(5): pgad140, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37168672

RESUMEN

Measurement-based estimates of greenhouse gas (GHG) emissions from complex industrial operations are challenging to obtain, but serve as an important, independent check on inventory-reported emissions. Such top-down estimates, while important for oil and gas (O&G) emissions globally, are particularly relevant for Canadian oil sands (OS) operations, which represent the largest O&G contributor to national GHG emissions. We present a multifaceted top-down approach for estimating CO2 emissions that combines aircraft-measured CO2/NOx emission ratios (ERs) with inventory and satellite-derived NOx emissions from Ozone Monitoring Instrument (OMI) and TROPOspheric Ozone Monitoring Instrument (TROPOMI) and apply it to the Athabasca Oil Sands Region (AOSR) in Alberta, Canada. Historical CO2 emissions were reconstructed for the surface mining region, and average top-down estimates were found to be >65% higher than facility-reported, bottom-up estimates from 2005 to 2020. Higher top-down vs. bottom-up emissions estimates were also consistently obtained for individual surface mining and in situ extraction facilities, which represent a growing category of energy-intensive OS operations. Although the magnitudes of the measured discrepancies vary between facilities, they combine such that the observed reporting gap for total AOSR emissions is ≥(31 ± 8) Mt for each of the last 3 years (2018-2020). This potential underestimation is large and broadly highlights the importance of continued review and refinement of bottom-up estimation methodologies and inventories. The ER method herein offers a powerful approach for upscaling measured facility-level or regional fossil fuel CO2 emissions by taking advantage of satellite remote sensing observations.

2.
Environ Sci Technol ; 56(12): 7564-7577, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35579536

RESUMEN

Carbonaceous emissions from wildfires are a dynamic mixture of gases and particles that have important impacts on air quality and climate. Emissions that feed atmospheric models are estimated using burned area and fire radiative power (FRP) methods that rely on satellite products. These approaches show wide variability and have large uncertainties, and their accuracy is challenging to evaluate due to limited aircraft and ground measurements. Here, we present a novel method to estimate fire plume-integrated total carbon and speciated emission rates using a unique combination of lidar remote sensing aerosol extinction profiles and in situ measured carbon constituents. We show strong agreement between these aircraft-derived emission rates of total carbon and a detailed burned area-based inventory that distributes carbon emissions in time using Geostationary Operational Environmental Satellite FRP observations (Fuel2Fire inventory, slope = 1.33 ± 0.04, r2 = 0.93, and RMSE = 0.27). Other more commonly used inventories strongly correlate with aircraft-derived emissions but have wide-ranging over- and under-predictions. A strong correlation is found between carbon monoxide emissions estimated in situ with those derived from the TROPOspheric Monitoring Instrument (TROPOMI) for five wildfires with coincident sampling windows (slope = 0.99 ± 0.18; bias = 28.5%). Smoke emission coefficients (g MJ-1) enable direct estimations of primary gas and aerosol emissions from satellite FRP observations, and we derive these values for many compounds emitted by temperate forest fuels, including several previously unreported species.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Incendios Forestales , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Gases , Tecnología de Sensores Remotos
3.
Air Qual Atmos Health ; 14(10): 1549-1570, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025821

RESUMEN

We have investigated the impact of reduced emissions due to COVID-19 lockdown measures in spring 2020 on air quality in Canada's four largest cities: Toronto, Montreal, Vancouver, and Calgary. Observed daily concentrations of NO2, PM2.5, and O3 during a "pre-lockdown" period (15 February-14 March 2020) and a "lockdown" period (22 March-2 May 2020), when lockdown measures were in full force everywhere in Canada, were compared to the same periods in the previous decade (2010-2019). Higher-than-usual seasonal declines in mean daily NO2 were observed for the pre-lockdown to lockdown periods in 2020. For PM2.5, Montreal was the only city with a higher-than-usual seasonal decline, whereas for O3 all four cities remained within the previous decadal range. In order to isolate the impact of lockdown-related emission changes from other factors such as seasonal changes in meteorology and emissions and meteorological variability, two emission scenarios were performed with the GEM-MACH air quality model. The first was a Business-As-Usual (BAU) scenario with baseline emissions and the second was a more realistic simulation with estimated COVID-19 lockdown emissions. NO2 surface concentrations for the COVID-19 emission scenario decreased by 31 to 34% on average relative to the BAU scenario in the four metropolitan areas. Lower decreases ranging from 6 to 17% were predicted for PM2.5. O3 surface concentrations, on the other hand, showed increases up to a maximum of 21% close to city centers versus slight decreases over the suburbs, but Ox (odd oxygen), like NO2 and PM2.5, decreased as expected over these cities. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11869-021-01039-1.

4.
Geophys Res Lett ; 47(17): e2020GL089269, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32904906

RESUMEN

TROPOMI satellite data show substantial drops in nitrogen dioxide (NO2) during COVID-19 physical distancing. To attribute NO2 changes to NO x emissions changes over short timescales, one must account for meteorology. We find that meteorological patterns were especially favorable for low NO2 in much of the United States in spring 2020, complicating comparisons with spring 2019. Meteorological variations between years can cause column NO2 differences of ~15% over monthly timescales. After accounting for solar angle and meteorological considerations, we calculate that NO2 drops ranged between 9.2% and 43.4% among 20 cities in North America, with a median of 21.6%. Of the studied cities, largest NO2 drops (>30%) were in San Jose, Los Angeles, and Toronto, and smallest drops (<12%) were in Miami, Minneapolis, and Dallas. These normalized NO2 changes can be used to highlight locations with greater activity changes and better understand the sources contributing to adverse air quality in each city.

5.
Environ Sci Technol ; 53(21): 12594-12601, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31601103

RESUMEN

The TROPOspheric Monitoring Instrument (TROPOMI) is used to derive top-down NOX emissions for two large power plants and three megacities in North America. We first re-process the vertical column NO2 with an improved air mass factor to correct for a known systematic low bias in the operational retrieval near urban centers. For the two power plants, top-down NOX emissions agree to within 10% of the emissions reported by the power plants. We then derive top-down NOX emissions rates for New York City, Chicago, and Toronto, and compare them to projected bottom-up emissions inventories. In this analysis of 2018 NOX emissions, we find a +22% overestimate for New York City, a -21% underestimate in Toronto, and good agreement in Chicago in the projected bottom-up inventories when compared to the top-down emissions. Top-down NOX emissions also capture intraseasonal variability, such as the weekday versus weekend effect (emissions are +45% larger on weekdays versus weekends in Chicago). Finally, we demonstrate the enhanced capabilities of TROPOMI, which allow us to derive a NOX emissions rate for Chicago using a single overpass on July 7, 2018. The large signal-to-noise ratio of TROPOMI is well-suited for estimating NOX emissions from relatively small sources and for sub-seasonal timeframes.


Asunto(s)
Contaminantes Atmosféricos , Chicago , Ciudades , Monitoreo del Ambiente , Ciudad de Nueva York , América del Norte , Centrales Eléctricas , Estados Unidos
6.
Sci Total Environ ; 695: 133805, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31419680

RESUMEN

Fossil-fuel CO2 emissions and their trends in eight U.S. megacities during 2006-2017 are inferred by combining satellite-derived NOX emissions with bottom-up city-specific NOX-to-CO2 emission ratios. A statistical model is fit to a collection NO2 plumes observed from the Ozone Monitoring Instrument (OMI), and is used to calculate top-down NOX emissions. Decreases in OMI-derived NOX emissions are observed across the eight cities from 2006 to 2017 (-17% in Miami to -58% in Los Angeles), and are generally consistent with long-term trends of bottom-up inventories (-25% in Miami to -49% in Los Angeles), but there are some interannual discrepancies. City-specific NOX-to-CO2 emission ratios, used to calculate inferred CO2, are estimated through annual bottom-up inventories of NOX and CO2 emissions disaggregated to 1 × 1 km2 resolution. Over the study period, NOX-to-CO2 emission ratios have decreased by ~40% nationwide (-24% to -51% for our studied cities), which is attributed to a faster reduction in NOX when compared to CO2 due to policy regulations and fuel type shifts. Combining top-down NOX emissions and bottom-up NOX-to-CO2 emission ratios, annual fossil-fuel CO2 emissions are derived. Inferred OMI-based top-down CO2 emissions trends vary between +7% in Dallas to -31% in Phoenix. For 2017, we report annual fossil-fuel CO2 emissions to be: Los Angeles 113 ±â€¯49 Tg/yr; New York City 144 ±â€¯62 Tg/yr; and Chicago 55 ±â€¯24 Tg/yr. A study in the Los Angeles area, using independent methods, reported a 2013-2016 average CO2 emissions rate of 104 Tg/yr and 120 Tg/yr, which suggests that the CO2 emissions from our method are in good agreement with other studies' top-down estimates. We anticipate future remote sensing instruments - with better spatial and temporal resolution - will better constrain the NOX-to-CO2 ratio and reduce the uncertainty in our method.

7.
Geophys Res Lett ; 46(2): 1049-1060, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33867596

RESUMEN

TROPOMI, on-board the Sentinel-5 Precursor satellite is a nadir-viewing spectrometer measuring reflected sunlight in the ultraviolet, visible, near-infrared, and shortwave infrared spectral range. From these spectra several important air quality and climate-related atmospheric constituents are retrieved at an unprecedented high spatial resolution, including nitrogen dioxide (NO2). We present the first retrievals of TROPOMI NO2 over the Canadian Oil Sands, contrasting them with observations from the OMI satellite instrument, and demonstrate its ability to resolve individual plumes and highlight its potential for deriving emissions from individual mining facilities. Further, the first TROPOMI NO2 validation is presented, consisting of aircraft and surface in-situ NO2 observations, as well as ground-based remote-sensing measurements between March and May 2018. Our comparisons show that the TROPOMI NO2 vertical column densities are highly correlated with the aircraft and surface in-situ NO2 observations, and the ground-based remote-sensing measurements with a low bias (15-30 %) over the Canadian Oil Sands. PLAIN LANGUAGE SUMMARY: Nitrogen dioxide (NO2) is a pollutant that is linked to respiratory health issues and has negative environmental impacts such as soil and water acidification. Near the surface the most significant sources of NO2 are fossil fuel combustion and biomass burning. With a recently launched satellite instrument (TROPOspheric Monitoring Instrument; TROPOMI) NO2 can be measured with an unprecedented combination of accuracy, spatial coverage, and resolution. This work presents the first TROPOMI NO2 measurements near the Canadian Oil Sands and shows that these measurements have an outstanding ability to detect NO2 on a very high horizontal resolution that is unprecedented for satellite NO2 observations. Further, these satellite measurements are in excellent agreement with aircraft and ground-based measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...