Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Neurophysiol ; 97(3): 2059-66, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17093115

RESUMEN

Although oxidative stress and reactive oxygen species generation is typically associated with localized neuronal injury, reactive oxygen species have also recently been shown to act as a physiological signal in neuronal plasticity. Here we define an essential role for reactive oxygen species as a critical stimulus for cardiorespiratory reflex responses to acute episodic hypoxia in the brain stem. To examine central cardiorespiratory responses to episodic hypoxia, we used an in vitro medullary slice that allows simultaneous examination of rhythmic respiratory-related activity and synaptic neurotransmission to cardioinhibitory vagal neurons. We show that whereas continuous hypoxia does not stimulate excitatory neurotransmission to cardioinhibitory vagal neurons, acute intermittent hypoxia of equivalent duration incrementally recruits an inspiratory-evoked excitatory neurotransmission to cardioinhibitory vagal neurons during intermittent hypoxia. This recruitment was dependent on the generation of reactive oxygen species. Further, we demonstrate that reactive oxygen species are incrementally generated in glutamatergic neurons in the ventrolateral medulla during intermittent hypoxia. These results suggest a neurochemical basis for the pronounced bradycardia that protects the heart against injury during intermittent hypoxia and demonstrates a novel role of reactive oxygen species in the brain stem.


Asunto(s)
Hipoxia/patología , Inhalación/fisiología , Bulbo Raquídeo/citología , Red Nerviosa/fisiopatología , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Animales Recién Nacidos , Antagonistas del GABA/farmacología , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Glicinérgicos/farmacología , Técnicas In Vitro , Inhalación/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Red Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Oxígeno/farmacología , Técnicas de Placa-Clamp/métodos , Piridazinas/farmacología , Ratas , Ratas Sprague-Dawley , Estricnina/farmacología
2.
J Alzheimers Dis ; 9(2): 195-205, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16873966

RESUMEN

Synapse loss and neuronal death are key features of Alzheimer's disease pathology. Disrupted axonal transport of mitochondria is a potential mechanism that could contribute to both. As the major producer of ATP in the cell, transport of mitochondria to the synapse is required for synapse maintenance. However, mitochondria also play an important role in the regulation of apoptosis. Investigation of aluminum (Al) maltolate induced apoptosis in human NT2 cells led us to explore the relationship between apoptosis related changes and the disruption of mitochondrial transport. Similar to that observed with tau over expression, NT2 cells exhibit peri-nuclear clustering of mitochondria following treatment with Al maltolate. Neuritic processes largely lacked mitochondria, except in axonal swellings. Similar, but more rapid results were observed following staurosporine administration, indicating that the clustering effect was not specific to Al maltolate. Organelle clustering and transport disruption preceded apoptosis. Incubation with the caspase inhibitor zVAD-FMK effectively blocked apoptosis, however failed to prevent organelle clustering. Thus, transport disruption is associated with the initiation, but not necessarily the completion of apoptosis. These results, together with observed transport defects and apoptosis related changes in Alzheimer disease brain suggest that mitochondrial transport disruption may play a significant role in synapse loss and thus the pathogenesis or Alzheimer's disease.


Asunto(s)
Apoptosis/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/ultraestructura , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Compuestos Organometálicos/toxicidad , Pironas/toxicidad , Enfermedad de Alzheimer/patología , Clorometilcetonas de Aminoácidos/toxicidad , Animales , Antineoplásicos/toxicidad , Línea Celular , Citocromos c/metabolismo , Inhibidores Enzimáticos/toxicidad , Humanos , Peróxido de Hidrógeno/toxicidad , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Microtúbulos/efectos de los fármacos , Neuritas/ultraestructura , Fármacos Neuroprotectores/toxicidad , Nocodazol/toxicidad , Orgánulos/efectos de los fármacos , Orgánulos/ultraestructura , Conejos , Estaurosporina/toxicidad
3.
J Neurosci ; 26(1): 21-9, 2006 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-16399669

RESUMEN

Hypercapnia evokes a strong cardiorespiratory response including gasping and a pronounced bradycardia; however, the mechanism responsible for these survival responses initiated in the brainstem is unknown. To examine the effects of hypercapnia on the central cardiorespiratory network, we used an in vitro medullary slice that allows simultaneous examination of rhythmic respiratory-related activity and inhibitory synaptic neurotransmission to cardioinhibitory vagal neurons (CVNs). Hypercapnia differentially modulated inhibitory neurotransmission to CVNs; whereas hypercapnia selectively depressed spontaneous glycinergic IPSCs in CVNs without altering respiratory-related increases in glycinergic neurotransmission, it decreased both spontaneous and inspiratory-associated GABAergic IPSCs. Because maternal smoking is the highest risk factor for sudden infant death syndrome (SIDS) and prenatal nicotine exposure is proposed to be the link between maternal smoking and SIDS, we examined the cardiorespiratory responses to hypercapnia in animals exposed to nicotine in the prenatal and perinatal period. In animals exposed to prenatal nicotine, hypercapnia evoked an exaggerated depression of GABAergic IPSCs in CVNs with no significant change in glycinergic neurotransmission. Hypercapnia altered inhibitory neurotransmission to CVNs at both presynaptic and postsynaptic sites. Although the results obtained in this study in vitro cannot be extrapolated with certainty to in vivo responses, the results of this study provide a likely neurochemical mechanism for hypercapnia-evoked bradycardia and the dysregulation of this response with exposure to prenatal nicotine, creating a higher risk for SIDS.


Asunto(s)
Hipercapnia/fisiopatología , Nicotina/farmacología , Efectos Tardíos de la Exposición Prenatal , Respiración/efectos de los fármacos , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiología , Animales , Animales Recién Nacidos , Femenino , Antagonistas del GABA/farmacología , Glicinérgicos/farmacología , Técnicas In Vitro , Bulbo Raquídeo/efectos de los fármacos , Bulbo Raquídeo/fisiología , Embarazo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
4.
Neurotoxicology ; 25(5): 859-67, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15288516

RESUMEN

Aluminum (Al) compounds are neurotoxic and have been shown to induce experimental neurodegeneration although the mechanism of this effect is unclear. In order to study this neurotoxic effect of Al, we have developed an in vitro model system using Al maltolate and human NT2 cells. Al maltolate at 500 microM caused significant cell death with a 24-h incubation and this toxicity was even more evident after 48 h. Lower doses of Al maltolate were also effective, but required a longer incubation for cell death. Nuclear fragmentation suggestive of apoptosis was observed as early as three hours and increased substantially through 24 h. Chromatin condensation and nuclear fragmentation were confirmed by electron microscopy. In addition, TUNEL positive nuclei were also observed. The release of cytochrome c was demonstrated with Western blot analysis. This in vitro model using human cells adds to our understanding of Al neurotoxicity and could provide insight into the neurodegenerative processes in human disease.


Asunto(s)
Apoptosis/efectos de los fármacos , Citocromos c/metabolismo , Neuronas/efectos de los fármacos , Compuestos Organometálicos/toxicidad , Pironas/toxicidad , Aluminio/toxicidad , Western Blotting , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/ultraestructura , Supervivencia Celular/efectos de los fármacos , Humanos , Etiquetado Corte-Fin in Situ , L-Lactato Deshidrogenasa/metabolismo , Microscopía Electrónica , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Neuronas/enzimología
5.
Brain Res ; 1007(1-2): 109-15, 2004 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-15064141

RESUMEN

Fentanyl citrate is a synthetic opiate analgesic often used clinically for neonatal anesthesia. Although fentanyl significantly depresses heart rate, the mechanism of inducing bradycardia remains unclear. One possible site of action is the cardioinhibitory parasympathetic vagal neurons in the nucleus ambiguus (NA), from which originates control of heart rate and cardiac function. Inhibitory synaptic activity to cardiac vagal neurons is a major determinant of their activity. Therefore, the effect of fentanyl on GABAergic neurotransmission to parasympathetic cardiac vagal neurons was studied using whole-cell patch clamp electrophysiology. Application of fentanyl induced a reduction in both the frequency and amplitude of GABAergic IPSCs in cardiac vagal neurons. This inhibition was mediated at both pre- and postsynaptic sites as evidenced by a dual decrease in the frequency and amplitude of spontaneous miniature IPSCs. Application of the selective micro-antagonist CTOP abolished the fentanyl-mediated inhibition of GABAergic IPSCs. These results demonstrate that fentanyl acts on micro-opioid receptors on cardiac vagal neurons and neurons preceding them to reduce GABAergic neurotransmission and increase parasympathetic activity. The inhibition of GABAergic effects may be one mechanism by which fentanyl induces bradycardia.


Asunto(s)
Fentanilo/farmacología , Bulbo Raquídeo/citología , Narcóticos/farmacología , Neuronas/efectos de los fármacos , Somatostatina/análogos & derivados , Transmisión Sináptica/efectos de los fármacos , Valina/análogos & derivados , Ácido gamma-Aminobutírico/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Anestésicos Locales/farmacología , Animales , Animales Recién Nacidos , Interacciones Farmacológicas , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Glicinérgicos/farmacología , Corazón/efectos de los fármacos , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Sprague-Dawley , Somatostatina/farmacología , Estricnina/farmacología , Tetrodotoxina/farmacología , Nervio Vago/efectos de los fármacos , Valina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA