Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(12)2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38137056

RESUMEN

Color can be an indicator of plant health, quality, and productivity, and is useful to researchers to understand plant nutritional content in their studies. Color may be related to chlorophyll content and photosynthetic activity and provides information for those studying diseases and mineral nutrition because every nutrient deficiency and many diseases produce symptoms that affect color. In order to identify significant loci related to both leaf and pod color in a snap bean (Phaseolus vulgaris L.) diversity panel, a genome-wide association study (GWAS) was carried out. Leaf color in one and pod traits in multiple environments were characterized using a colorimeter. L*a*b* color data were recorded and used to calculate chroma (C*) and hue angle (H°). Leaves were evaluated at three positions (lower, middle, and upper) in the canopy and both pod exterior and interior colors were obtained. GWAS was conducted using two reference genomes that represent the Andean (G19833) and Middle American (5-593) domestication centers. Narrow sense heritabilities were calculated using the mixed linear model (MLM) method in genome association and prediction integrated tool (GAPIT), and significant single nucleotide polymorphisms (SNPs) for each color parameter were obtained using the Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) GWAS model with two principal components (PCAs). In comparison to pod color traits, narrow sense heritabilities of leaf traits were low and similar for both reference genomes. Generally, narrow sense heritability for all traits was highest in the lower, followed by middle, and then upper leaf positions. Heritability for both pod interior and exterior color traits was higher using the G19833 reference genome compared to 5-593 when evaluated by year and means across years. Forty-five significant SNPs associated with leaf traits and 872 associated with pods, totaling 917 significant SNPs were identified. Only one SNP was found in common for both leaf and pod traits on Pv03 in the 5-593 reference genome. One-hundred thirteen significant SNPs, 30 in leaves and 83 in pods had phenotypic variation explained (PVE) of 10% or greater. Fourteen SNPs (four from G19833 and ten from 5-593) with ≥10 PVE%, large SNP effect, and largest p-value for L* and H° pod exterior was identified on Pv01, Pv02, Pv03, and Pv08. More SNPs were associated with pod traits than with leaf traits. The pod interior did not exhibit colors produced by anthocyanins or flavonols which allowed the differentiation of potential candidate genes associated with chloroplast and photosynthetic activity compared to the pod exterior where candidate genes related to both flavonoids and photosynthesis affected color. Several SNPs were associated with known qualitative genes including the wax pod locus (y), persistent color (pc), purple pods (V), and two genes expressed in seeds but not previously reported to affect other plant tissues (B and J). An evaluation of significant SNPs within annotated genes found a number, within a 200 kb window, involved in both flavonoid and photosynthetic biosynthetic pathways.


Asunto(s)
Estudio de Asociación del Genoma Completo , Phaseolus , Estados Unidos , Antocianinas , Teorema de Bayes , Phaseolus/genética , Hojas de la Planta/genética
2.
Genes (Basel) ; 13(12)2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36553566

RESUMEN

White mold can result in snap bean yield losses of 90 to 100% when field conditions favor the pathogen. A genome-wide association study (GWAS) was conducted to detect loci significantly associated with white mold resistance in a panel of snap bean (Phaseolus vulgaris L.) cultivars. Two populations of snap bean were used in this study. The first population was the BeanCAP (Coordinated Agriculture Project) Snap Bean Diversity Panel (SBDP) (n = 136), and the second population was the Snap Bean Association Panel (SnAP) (n = 378). SBDP was evaluated for white mold reaction in the field in 2012 and 2013, and SnAP was screened in a greenhouse only using the seedling straw test in 2016. Two reference genomes representing the Andean and Middle American centers of domestication were utilized to align the genotyping-by-sequencing (GBS) data. A GWAS was performed using FarmCPU with one principal component after comparing five models. Thirty-four single-nucleotide polymorphisms (SNPs) significantly associated with white mold resistance were detected. Eleven significant SNPs were identified by the seedling straw test, and 23 significant SNPs were identified by field data. Fifteen SNPs were identified within a 100 kb window containing pentatricopeptide repeat (PPR)-encoding genes, and eleven were close to leucine-rich repeat (LRR)-encoding genes, suggesting that these two classes are of outsized importance for snap bean resistance to white mold.


Asunto(s)
Estudio de Asociación del Genoma Completo , Phaseolus , Estados Unidos , Phaseolus/genética , Hongos/genética , Agricultura
3.
J Food Sci ; 84(12): 3746-3762, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31681987

RESUMEN

Plant breeders working with new or underrepresented horticultural crops often have minimal sensory resources available to aid in the breeding and selection of new varieties. Kale (Brassica oleracea var. acephala) is a recently popularized horticultural crop in Western markets, however, plant breeding programs have little knowledge regarding the underlying sensory characteristics motivating this trend. We employed a multilayered, sensory-driven approach to understand the inherent consumer values, sensory attributes, and consumer preferences for kale types currently available on the market and novel genotypes from the Cornell AgriTech vegetable breeding program. Underlying consumer values related to storability, health and wellbeing, and sensory characteristics were identified through Qualitative Multivariate Analysis (QMA). A trained descriptive panel developed a lexicon of 44 sensory attributes common within kale germplasm, 21 of which exhibited significant differences among the 15 tested kale genotypes. Following a consumer test, four clusters of kale consumers were identified with agglomerative hierarchical clustering (AHC) and external preference mapping was used to connect consumer hedonic scores with descriptive data. Consumers demonstrated a preference for familiar kale types (that is, curly types), while new test hybrids scored favorably within flavor and appearance modalities. Preference mapping highlighted the utility of plant breeding in developing products to expand the existing sensory space. This work provides important resources for horticultural crop selection efforts, and it serves as a strategic model for breeding programs working with new or unfamiliar traits. PRACTICAL APPLICATION: Plant breeders are responsible for selecting and improving traits that influence consumer acceptance, including quality traits such as appearance and flavor. Understanding the relative importance of sensory characteristics and the variation of these sensory characteristics can help plant breeders prioritize these traits within their program. We have developed a standardized sensory lexicon for kale and related leafy Brassicas, identified variation for texture and flavor in our breeding program, and gained a better understanding of consumer preferences to guide future breeding efforts.


Asunto(s)
Brassica , Comportamiento del Consumidor , Preferencias Alimentarias , Brassica/química , Brassica/genética , Humanos , Fitomejoramiento , Hojas de la Planta , Gusto
4.
J Agric Food Chem ; 64(7): 1484-93, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26828966

RESUMEN

The effects of growth temperatures on anthocyanin content and profile were tested on juvenile cabbage and kale plants. The effects of cold storage time were evaluated on both juvenile and mature plants. The anthocyanin content in juvenile plants ranged from 3.82 mg of cyanidin-3,5-diglucoside equivalent (Cy equiv)/g of dry matter (dm) at 25 °C to 10.00 mg of Cy equiv/g of dm at 16 °C, with up to 76% diacylated anthocyanins. Cold storage of juvenile plants decreased the total amount of anthocyanins but increased the diacylated anthocyanin content by 3-5%. In mature plants, cold storage reduced the total anthocyanin content from 22 to 12.23 mg/g after 5 weeks of storage in red cabbage, while the total anthocyanin content increased after 2 weeks of storage from 2.34 to 3.66 mg of Cy equiv/g of dm in kale without having any effect on acylation in either morphotype. The results obtained in this study will be useful for optimizing anthocyanin production.


Asunto(s)
Antocianinas/química , Brassica/química , Brassica/crecimiento & desarrollo , Antocianinas/metabolismo , Antioxidantes/metabolismo , Brassica/metabolismo , Temperatura
5.
Plant Genome ; 8(1): eplantgenome2014.09.0058, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33228290

RESUMEN

Since its emergence in 2001, an aphid-transmitted virus disease complex has caused substantial economic losses to snap bean (Phaseolus vulgaris L.) production and processing in the Great Lakes Region of the United States. The general ineffectiveness of chemical control measures for nonpersistently transmitted viruses established an urgent need for the development and deployment of cultivars with resistance to the component viruses. Our objectives were to further characterize the inheritance of resistance to Bean yellow mosaic virus (BYMV), which is conditioned by the By-2 allele, to adapt genotyping-by-sequencing (GBS) to common bean to discover and genotype genome-wide single nucleotide polymorphisms (SNPs) in a set of recombinant inbred lines (RILs) derived from an introgression program, and to enable and validate marker-assisted selection for By-2. We optimized ApeKI for GBS in common bean and retained 7530 high-quality SNPs that segregated in our introgression RILs. A case-control genome-wide association study (GWAS) was used to discover 44 GBS SNPs that were strongly associated with the resistance phenotype and which delimited a 974 kb physical interval on the distal portion of chromosome 2. Seven of these SNPs were converted to single-marker Kompetitive Allele-Specific Polymerase chain reaction (KASP) assays and were demonstrated to be tightly linked to BYMV resistance in an F2 population of 185 individuals. This research enables marker-assisted selection of By-2, provides enhanced resolution for fine mapping, and demonstrates the potential of GBS as a highly efficient, high-throughput genotyping platform for common bean breeding and genetics.

6.
Theor Appl Genet ; 126(11): 2849-63, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23933781

RESUMEN

Clover yellow vein virus (ClYVV) is capable of causing severe damage to common bean (Phaseolus vulgaris L.) production worldwide. The snap bean market class is particularly vulnerable because infection may lead to distortion and necrosis of the fresh green pods and rejection of the harvest. Three putatively independent recessive genes (cyv, desc, bc-3) have been reported to condition resistance to ClYVV; however, their allelic relationships have not been resolved. We identified, evaluated, and characterized the phenotypic and molecular genetic variation present in 21 informative common bean genotypes for resistance to ClYVV. Allelism testing phenotypes from multiple populations provided clear evidence that the three genes were a series of recessive alleles at the Bc-3 locus that condition unique potyvirus strain- and species-specific resistance spectra. Candidate gene analysis revealed complete association between the recessive resistance alleles and unique patterns of predicted amino acid substitutions in P. vulgaris eukaryotic translation initiation factor 4E (PveIF4E). This led to the discovery and characterization of two novel PveIF4E alleles associated with resistance to ClYVV, PveIF4E (3) , and PveIF4E (4) . We developed KASPar allele-specific SNP genotyping assays and demonstrated their ability to accurately detect and differentiate all of the PveIF4E haplotypes present in the germplasm, allelism testing, and in three separate segregating populations. The results contribute to an enhanced understanding and accessibility of the important potyvirus resistance conditioned by recessive alleles at Bc-3. The KASPar assays should be useful to further enable germplasm exploration, allelic discrimination, and marker-assisted introgression of bc-3 alleles in common bean.


Asunto(s)
Alelos , Resistencia a la Enfermedad/genética , Factor 4E Eucariótico de Iniciación/genética , Sitios Genéticos/genética , Phaseolus/genética , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Secuencia de Bases , Segregación Cromosómica/genética , Genes Recesivos/genética , Genoma de Planta/genética , Haplotipos , Datos de Secuencia Molecular , Phaseolus/inmunología , Phaseolus/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Polimorfismo de Nucleótido Simple/genética
8.
Mol Vis ; 16: 2760-4, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21203403

RESUMEN

PURPOSE: Leber hereditary optic neuropathy (LHON) is a common cause of inherited blindness, primarily due to one of three mitochondrial DNA (mtDNA) mutations. These mtDNA pathogenic mutations have variable clinical penetrance. Recent linkage evidence raised the possibility that the nuclear gene optic atrophy 1 (OPA1) determines whether mtDNA mutation carriers develop blindness. To validate these findings we studied OPA1 in three independent LHON cohorts: sequencing the gene in discordant male sib pairs, carrying out a family-based association study of common functional genetic variants, and carrying out a population-based association study of the same genetic variants. METHODS: We tested 3 hypothesis in three separate study groups. Study group 1: Direct sequencing of OPA1 coding regions was performed using sequencing methodologies (Applied Biosystems, Foster City, CA). Chromatograms were compared with the GenBank reference sequence NM_015560.1. Splice-site prediction was performed using GeneSplicer. Study group 2: Genotyping for rs166850 and rs10451941 was performed by restriction fragment length polymorphism (RFLP) analysis with specific primers for both genotypes, using The restriction enzymes RsaI and FspBI to discriminate genotypes. Study group 3: Genotyping for rs166850 and rs10451941 was performed by primer extension of allele-specific extensions products by matrix-associated laser desorption/ionisation time-of-flight (MALDI-TOF, Seqeunom, San Diego, CA) mass spectrometry. Allele and genotype frequencies were compared using Pearson's chi-square test. Multiple logistic regression was performed to look for interactions between the variables. All analyses were performed using SPSS software version 17.0 (SPSS Inc.). RESULTS: In all three groups we were unable to find an association between OPA1 genetic variation and visual failure in LHON mtDNA mutation carriers. CONCLUSIONS: Our findings suggest that genetic variation in OPA1 is unlikely to make a major contribution to the risk of blindness in LHON mutation carriers.


Asunto(s)
GTP Fosfohidrolasas/genética , Atrofia Óptica Hereditaria de Leber/genética , Penetrancia , Polimorfismo de Nucleótido Simple/genética , Análisis Mutacional de ADN , ADN Mitocondrial/genética , Frecuencia de los Genes/genética , Haplotipos/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...