Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(21): e2309202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569218

RESUMEN

The pseudo-natural product (pseudo-NP) concept aims to combine NP fragments in arrangements that are not accessible through known biosynthetic pathways. The resulting compounds retain the biological relevance of NPs but are not yet linked to bioactivities and may therefore be best evaluated by unbiased screening methods resulting in the identification of unexpected or unprecedented bioactivities. Herein, various NP fragments are combined with a tricyclic core connectivity via interrupted Fischer indole and indole dearomatization reactions to provide a collection of highly three-dimensional pseudo-NPs. Target hypothesis generation by morphological profiling via the cell painting assay guides the identification of an unprecedented chemotype for Aurora kinase inhibition with both its relatively highly 3D structure and its physicochemical properties being very different from known inhibitors. Biochemical and cell biological characterization indicate that the phenotype identified by the cell painting assay corresponds to the inhibition of Aurora kinase B.


Asunto(s)
Productos Biológicos , Inhibidores de Proteínas Quinasas , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Productos Biológicos/farmacología , Productos Biológicos/química , Aurora Quinasas/antagonistas & inhibidores , Aurora Quinasas/metabolismo , Descubrimiento de Drogas/métodos , Aurora Quinasa B/antagonistas & inhibidores , Aurora Quinasa B/metabolismo
2.
Nat Chem ; 16(6): 945-958, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38365941

RESUMEN

The efficient exploration of biologically relevant chemical space is essential for the discovery of bioactive compounds. A molecular design principle that possesses both biological relevance and structural diversity may more efficiently lead to compound collections that are enriched in diverse bioactivities. Here the diverse pseudo-natural product (PNP) strategy, which combines the biological relevance of the PNP concept with synthetic diversification strategies from diversity-oriented synthesis, is reported. A diverse PNP collection was synthesized from a common divergent intermediate through developed indole dearomatization methodologies to afford three-dimensional molecular frameworks that could be further diversified via intramolecular coupling and/or carbon monoxide insertion. In total, 154 PNPs were synthesized representing eight different classes. Cheminformatic analyses showed that the PNPs are structurally diverse between classes. Biological investigations revealed the extent of diverse bioactivity enrichment of the collection in which four inhibitors of Hedgehog signalling, DNA synthesis, de novo pyrimidine biosynthesis and tubulin polymerization were identified from four different PNP classes.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Productos Biológicos/síntesis química , Indoles/química , Indoles/síntesis química , Humanos , Estructura Molecular , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/antagonistas & inhibidores
3.
Chemistry ; 30(5): e202303027, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37755456

RESUMEN

Design strategies that can access natural-product-like chemical space in an efficient manner may facilitate the discovery of biologically relevant compounds. We have employed a divergent intermediate strategy to construct an indole alkaloid-inspired compound collection derived from two different molecular design principles, i.e. biology-oriented synthesis and pseudo-natural products. The divergent intermediate was subjected to acid-catalyzed or newly discovered Sn-mediated conditions to selectively promote intramolecular C- or N-acylation, respectively. After further derivatization, a collection totalling 84 compounds representing four classes was obtained. Morphological profiling via the cell painting assay coupled with a subprofile analysis showed that compounds derived from different design principles have different bioactivity profiles. The subprofile analysis suggested that a pseudo-natural product class is enriched in modulators of tubulin, and subsequent assays led to the identification of compounds that suppress in vitro tubulin polymerization and mitotic progression.


Asunto(s)
Alcaloides , Antineoplásicos , Productos Biológicos , Oxindoles , Tubulina (Proteína) , Alcaloides Indólicos/química , Productos Biológicos/química
4.
Angew Chem Int Ed Engl ; 62(48): e202310222, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37818743

RESUMEN

Monoterpene indole alkaloids (MIAs) are endowed with high structural and spatial complexity and characterized by diverse biological activities. Given this complexity-activity combination in MIAs, rapid and efficient access to chemical matter related to and with complexity similar to these alkaloids would be highly desirable, since such compound classes might display novel bioactivity. We describe the design and synthesis of a pseudo-natural product (pseudo-NP) collection obtained by the unprecedented combination of MIA fragments through complexity-generating transformations, resulting in arrangements not currently accessible by biosynthetic pathways. Cheminformatic analyses revealed that both the pseudo-NPs and the MIAs reside in a unique and common area of chemical space with high spatial complexity-density that is only sparsely populated by other natural products and drugs. Investigation of bioactivity guided by morphological profiling identified pseudo-NPs that inhibit DNA synthesis and modulate tubulin. These results demonstrate that the pseudo-NP collection occupies similar biologically relevant chemical space that Nature has endowed MIAs with.


Asunto(s)
Alcaloides , Monoterpenos , Alcaloides Indólicos
5.
Chembiochem ; 24(24): e202300579, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37869939

RESUMEN

Lipidation of the LC3 protein has frequently been employed as a marker of autophagy. However, LC3-lipidation is also triggered by stimuli not related to canonical autophagy. Therefore, characterization of the driving parameters for LC3 lipidation is crucial to understanding the biological roles of LC3. We identified a pseudo-natural product, termed Inducin, that increases LC3 lipidation independently of canonical autophagy, impairs lysosomal function and rapidly recruits Galectin 3 to lysosomes. Inducin treatment promotes Endosomal Sorting Complex Required for Transport (ESCRT)-dependent membrane repair and transcription factor EB (TFEB)-dependent lysosome biogenesis ultimately leading to cell death.


Asunto(s)
Autofagia , Lisosomas , Transporte Biológico , Galectina 3 , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
6.
J Med Chem ; 66(18): 12739-12750, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37651653

RESUMEN

The fraction of sp3-hybridized carbons (Fsp3) and the fraction of stereogenic carbons (FCstereo) are two widely employed scores of molecular complexity with strong links to biologically relevant features. However, they do not comprehensively express molecular topology, and they often do not match the chemical intuition of complexity. We propose the spacial score (SPS) as an empirical scoring system that builds upon the principle underlying Fsp3 and FCstereo and expresses the spacial complexity of a compound in a uniform manner on a highly granular scale. The size-normalized SPS (nSPS) can differentiate distributions of natural products and synthetic compounds and is applicable in the analysis of biological activity data. Analysis of the ChEMBL database revealed general trends of increasing selectivity and potency with increasing nSPS. SPS can also be used advantageously in planning and analysis of synthesis programs for direct comparison of chemical transformations and intermediates in reaction sequences.


Asunto(s)
Productos Biológicos , Productos Biológicos/química
7.
Chem Sci ; 14(29): 7936-7943, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37502335

RESUMEN

De novo combination of natural product (NP) fragments by means of efficient, complexity- and stereogenic character-generating transformations to yield pseudo-natural products (PNPs) may explore novel biologically relevant chemical space. Pyrrolidine- and tetrahydroquinoline fragments rarely occur in combination in nature, such that PNPs that embody both fragments might represent novel NP-inspired chemical matter endowed with bioactivity. We describe the synthesis of pyrrolo[3,2-c]quinolines by means of a highly enantioselective intramolecular exo-1,3-dipolar cycloaddition catalysed by the AgOAc/(S)-DMBiphep complex. The cycloadditions proceeded in excellent yields (up to 98%) and with very high enantioselectivity (up to 99% ee). Investigation of the resulting PNP collection in cell-based assays monitoring different biological programmes led to the discovery of a structurally novel and potent inhibitor of the Hedgehog signalling pathway that targets the Smoothened protein.

8.
JACS Au ; 2(11): 2400-2416, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36465532

RESUMEN

The case for a renewed focus on Nature in drug discovery is reviewed; not in terms of natural product screening, but how and why biomimetic molecules, especially those produced by natural processes, should deliver in the age of artificial intelligence and screening of vast collections both in vitro and in silico. The declining natural product-likeness of licensed drugs and the consequent physicochemical implications of this trend in the context of current practices are noted. To arrest these trends, the logic of seeking new bioactive agents with enhanced natural mimicry is considered; notably that molecules constructed by proteins (enzymes) are more likely to interact with other proteins (e.g., targets and transporters), a notion validated by natural products. Nature's finite number of building blocks and their interactions necessarily reduce potential numbers of structures, yet these enable expansion of chemical space with their inherent diversity of physical characteristics, pertinent to property-based design. The feasible variations on natural motifs are considered and expanded to encompass pseudo-natural products, leading to the further logical step of harnessing bioprocessing routes to access them. Together, these offer opportunities for enhancing natural mimicry, thereby bringing innovation to drug synthesis exploiting the characteristics of natural recognition processes. The potential for computational guidance to help identifying binding commonalities in the route map is a logical opportunity to enable the design of tailored molecules, with a focus on "organic/biological" rather than purely "synthetic" structures. The design and synthesis of prototype structures should pay dividends in the disposition and efficacy of the molecules, while inherently enabling greener and more sustainable manufacturing techniques.

9.
Chembiochem ; 23(22): e202200475, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36134475

RESUMEN

Profiling approaches have been increasingly employed for the characterization of disease-relevant phenotypes or compound perturbation as they provide a broad, unbiased view on impaired cellular states. We report that morphological profiling using the cell painting assay (CPA) can detect modulators of de novo pyrimidine biosynthesis and of dihydroorotate dehydrogenase (DHODH) in particular. The CPA can differentiate between impairment of pyrimidine and folate metabolism, which both affect cellular nucleotide pools. The identified morphological signature is shared by inhibitors of DHODH and the functionally tightly coupled complex III of the mitochondrial respiratory chain as well as by UMP synthase, which is downstream of DHODH. The CPA appears to be particularly suited for the detection of DHODH inhibitors at the site of their action in cells. As DHODH is a validated therapeutic target, the CPA will enable unbiased identification of DHODH inhibitors and inhibitors of de novo pyrimidine biosynthesis for biological research and drug discovery.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/farmacología , Pirimidinas/farmacología , Descubrimiento de Drogas
10.
Chemistry ; 28(67): e202202164, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36083197

RESUMEN

Pseudo-natural products (pseudo-NPs) are de novo combinations of natural product (NP) fragments that define novel bioactive chemotypes. For their discovery, new design principles are being sought. Previously, pseudo-NPs were synthesized by the combination of fragments originating from biosynthetically unrelated NPs to guarantee structural novelty and novel bioactivity. We report the combination of fragments from biosynthetically related NPs in novel arrangements to yield a novel chemotype with activity not shared by the guiding fragments. We describe the synthesis of the polyketide pseudo-NP grismonone and identify it as a structurally novel and potent inhibitor of Hedgehog signaling. The insight that the de novo combination of fragments derived from biosynthetically related NPs may also yield new biologically relevant compound classes with unexpected bioactivity may be considered a chemical extension or diversion of existing biosynthetic pathways and greatly expands the opportunities for exploration of biologically relevant chemical space by means of the pseudo-NP principle.


Asunto(s)
Antineoplásicos , Productos Biológicos , Policétidos , Productos Biológicos/química , Proteínas Hedgehog/metabolismo , Vías Biosintéticas
11.
J Am Chem Soc ; 144(8): 3314-3329, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35188375

RESUMEN

Natural products are the result of Nature's exploration of biologically relevant chemical space through evolution and an invaluable source of bioactive small molecules for chemical biology and medicinal chemistry. Novel concepts for the discovery of new bioactive compound classes based on natural product structure may enable exploration of wider biologically relevant chemical space. The pseudo-natural product concept merges the relevance of natural product structure with efficient exploration of chemical space by means of fragment-based compound development to inspire the discovery of new bioactive chemical matter through de novo combination of natural product fragments in unprecedented arrangements. The novel scaffolds retain the biological relevance of natural products but are not obtainable through known biosynthetic pathways which can lead to new chemotypes that may have unexpected or unprecedented bioactivities. Herein, we cover the workflow of pseudo-natural product design and development, highlight recent examples, and discuss a cheminformatic analysis in which a significant portion of biologically active synthetic compounds were found to be pseudo-natural products. We compare the concept to natural evolution and discuss pseudo-natural products as the human-made equivalent, i.e. the chemical evolution of natural product structure.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Quimioinformática , Evolución Química , Humanos
12.
Angew Chem Int Ed Engl ; 61(18): e202115193, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35170181

RESUMEN

For the discovery of novel chemical matter generally endowed with bioactivity, strategies may be particularly efficient that combine previous insight about biological relevance, e.g., natural product (NP) structure, with methods that enable efficient coverage of chemical space, such as fragment-based design. We describe the de novo combination of different 5-membered NP-derived N-heteroatom fragments to structurally unprecedented "pseudo-natural products" in an efficient complexity-generating and enantioselective one-pot synthesis sequence. The pseudo-NPs inherit characteristic elements of NP structure but occupy areas of chemical space not covered by NP-derived chemotypes, and may have novel biological targets. Investigation of the pseudo-NPs in unbiased phenotypic assays and target identification led to the discovery of the first small-molecule ligand of the RHO GDP-dissociation inhibitor 1 (RHOGDI1), termed Rhonin. Rhonin inhibits the binding of the RHOGDI1 chaperone to GDP-bound RHO GTPases and alters the subcellular localization of RHO GTPases.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Ligandos , Proteínas de Unión al GTP rho , Inhibidor alfa de Disociación del Nucleótido Guanina rho , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico
13.
Adv Sci (Weinh) ; 8(19): e2102042, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34346568

RESUMEN

Chemical and biological limitations in bioactive compound design based on natural product (NP) structure can be overcome by the combination of NP-derived fragments in unprecedented arrangements to afford "pseudo-natural products" (pseudo-NPs). A new pseudo-NP design principle is described, i.e., the combination of NP-fragments by transformations that are not part of current biosynthesis pathways. A collection of indofulvin pseudo-NPs is obtained from 2-hydroxyethyl-indoles and ketones derived from the fragment-sized NP griseofulvin by means of an iso-oxa-Pictet-Spengler reaction. Cheminformatic analysis indicates that the indofulvins reside in an area of chemical space sparsely covered by NPs, drugs, and drug-like compounds and they may combine favorable properties of these compound classes. Biological evaluation of the compound collection in different cell-based assays and the unbiased high content cell painting assay reveal that the indofulvins define a new autophagy inhibitor chemotype that targets mitochondrial respiration.


Asunto(s)
Autofagia/efectos de los fármacos , Productos Biológicos/síntesis química , Quimioinformática/métodos , Indoles/síntesis química
14.
Angew Chem Int Ed Engl ; 60(36): 20012-20020, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34236754

RESUMEN

In dynamic covalent chemistry, reactions follow a thermodynamically controlled pathway through equilibria. Reversible covalent-bond formation and breaking in a dynamic process enables the interconversion of products formed under kinetic control to thermodynamically more stable isomers. Notably, enantioselective catalysis of dynamic transformations has not been reported and applied in complex molecule synthesis. We describe the discovery of dynamic covalent enantioselective metal-complex-catalyzed 1,3-dipolar cycloaddition reactions. We have developed a stereodivergent tandem synthesis of structurally and stereochemically complex molecules that generates eight stereocenters with high diastereo- and enantioselectivity through asymmetric reversible bond formation in a dynamic process in two consecutive Ag-catalyzed 1,3-dipolar cycloadditions of azomethine ylides with electron-poor olefins. Time-dependent reversible dynamic covalent-bond formation gives enantiodivergent and diastereodivergent access to structurally complex double cycloadducts with high selectivity from a common set of reagents.

15.
ACS Pharmacol Transl Sci ; 4(3): 1136-1148, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34151204

RESUMEN

Niemann-Pick disease type C1 (NPC1) is a rare genetic cholesterol storage disorder caused by mutations in the NPC1 gene. Mutations in this transmembrane late endosome protein lead to loss of normal cholesterol efflux from late endosomes and lysosomes. It has been shown that broad spectrum histone deacetylase inhibitors (HDACi's) such as Vorinostat correct the cholesterol accumulation phenotype in the majority of NPC1 mutants tested in cultured cells. In order to determine the optimal specificity for HDACi correction of the mutant NPC1s, we screened 76 HDACi's of varying specificity. We tested the ability of these HDACi's to correct the excess accumulation of cholesterol in patient fibroblast cells that homozygously express NPC1 I1061T , the most common mutation. We determined that inhibition of HDACs 1, 2, and 3 is important for correcting the defect, and combined inhibition of all three is needed to achieve the greatest effect, suggesting a need for multiple effects of the HDACi treatments. Identifying the specific HDACs involved in the process of regulating cholesterol trafficking in NPC1 will help to focus the search for more specific druggable targets.

16.
Nat Commun ; 12(1): 1883, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767198

RESUMEN

Natural product structure and fragment-based compound development inspire pseudo-natural product design through different combinations of a given natural product fragment set to compound classes expected to be chemically and biologically diverse. We describe the synthetic combination of the fragment-sized natural products quinine, quinidine, sinomenine, and griseofulvin with chromanone or indole-containing fragments to provide a 244-member pseudo-natural product collection. Cheminformatic analyses reveal that the resulting eight pseudo-natural product classes are chemically diverse and share both drug- and natural product-like properties. Unbiased biological evaluation by cell painting demonstrates that bioactivity of pseudo-natural products, guiding natural products, and fragments differ and that combination of different fragments dominates establishment of unique bioactivity. Identification of phenotypic fragment dominance enables design of compound classes with correctly predicted bioactivity. The results demonstrate that fusion of natural product fragments in different combinations and arrangements can provide chemically and biologically diverse pseudo-natural product classes for wider exploration of biologically relevant chemical space.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/síntesis química , Descubrimiento de Drogas/métodos , Quimioinformática , Cromonas/química , Griseofulvina/química , Indoles/química , Morfinanos/química , Quinidina/química , Quinina/química , Bibliotecas de Moléculas Pequeñas/química
17.
J Org Chem ; 86(2): 1612-1621, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33369429

RESUMEN

The development of new chemical tools with improved properties is essential to chemical and cell biology. Of particular interest is the development of mimics of small molecules with important cellular function that allow the direct observation of their trafficking in a cell. To this end, a novel 15-azasterol has been designed and synthesized as a luminescent cholesterol mimic for the monitoring of cholesterol trafficking. The brightness of this probe, which is ∼32-times greater than the widely used dehydroergosterol probe, is combined with resistance to photobleaching in solution and in human fibroblasts and an exceptionally large Stokes-like shift of ∼150-200 nm. The photophysical properties of the probe have been studied experimentally and computationally, suggesting an intersystem crossing to the triplet excited state with subsequent phosphorescent decay. Molecular dynamics simulations show a similar binding mode of cholesterol and the azasterol probe to NPC proteins, demonstrating the structural similarity of the probe to cholesterol.


Asunto(s)
Colesterol , Fluorescencia , Humanos
18.
Curr Opin Chem Biol ; 56: 111-118, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32362382

RESUMEN

Through evolution, nature has provided natural products (NPs) as a rich source of diverse bioactive material. Many drug discovery programs have used nature as an inspiration for the design of NP-like compound classes. These concepts are guided by the prevalidated biological relevance of NPs while going beyond the limitations of nature to produce chemical matter that could have unexpected or novel bioactivities. Herein, we discuss, compare, and highlight recent examples of NP-inspired methods with a focus on the pseudo-NP concept.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/farmacología , Compuestos Heterocíclicos/química , Hidrocarburos Aromáticos/química , Avidina/síntesis química , Alcaloides de Cinchona/química , Diterpenos/química , Descubrimiento de Drogas , Humanos , Compuestos Policíclicos/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Pleuromutilinas
19.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(10): 1545-1561, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31051283

RESUMEN

Niemann-Pick type C1 (NPC1) disease is a fatal neurovisceral disease for which there are no FDA approved treatments, though cyclodextrin (HPßCD) slows disease progression in preclinical models and in an early phase clinical trial. Our goal was to evaluate the mechanism of action of a previously described combination-therapy, Triple Combination Formulation (TCF) - comprised of the histone deacetylase inhibitor (HDACi) vorinostat/HPßCD/PEG - shown to prolong survival in Npc1 mice. In these studies, TCF's benefit was attributed to enhanced vorinostat pharmacokinetics (PK). Here, we show that TCF reduced lipid storage, extended lifespan, and preserved neurological function in Npc1 mice. Unexpectedly, substitution of an inactive analog for vorinostat in TCF revealed similar efficacy. We demonstrate that the efficacy of TCF was attributable to enhanced HPßCD PK and independent of NPC1 protein expression. We conclude that although HDACi effectively reduce cholesterol storage in NPC1-deficient cells, HDACi are ineffective in vivo in Npc1 mice.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/uso terapéutico , Inhibidores de Histona Desacetilasas/uso terapéutico , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Polietilenglicoles/uso terapéutico , Vorinostat/uso terapéutico , Animales , Células Cultivadas , Combinación de Medicamentos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/metabolismo
20.
Org Lett ; 18(21): 5724-5727, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27768319

RESUMEN

Trisubstituted α-pyrones are obtained by a Pd-catalyzed three-component, single-flask operation via an α-arylation, subsequent α-alkenylation, alkene isomerization, and dienolate lactonization. A variety of coupling components under mild conditions afforded isolated yields of up to 93% of the pyrones with complete control of regioselectivity. Metal dependence was noted for three of the steps of the pathway. Utility of the pyrone products was demonstrated by further transformations providing convenient access to polyaromatic compounds, exhibiting broad molecular diversity.


Asunto(s)
Alquenos/química , Cetonas/química , Pironas/síntesis química , Catálisis , Estructura Molecular , Paladio/química , Pironas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...