Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675368

RESUMEN

Growing resistance to antimicrobials, combined with pathogens that form biofilms, presents significant challenges in healthcare. Modifying current antimicrobial agents is an economical approach to developing novel molecules that could exhibit biological activity. Thus, five sulfanilamide Schiff bases were synthesized under microwave irradiation and characterized spectroscopically and in silico. They were evaluated for their antimicrobial and antibiofilm activities against both Gram-positive and Gram-negative bacterial strains. Their cytotoxic potential against two cancer cell lines was also determined. Gram-positive bacteria were susceptible to the action of these compounds. Derivatives 1b and 1d inhibited S. aureus's growth (MIC from 0.014 mg/mL) and biofilm (IC from 0.029 mg/mL), while compound 1e was active against E. faecalis's planktonic and sessile forms. Two compounds significantly reduced cell viability at 5 µg/mL after 24 h of exposure (1d-HT-29 colorectal adenocarcinoma cells, 1c-LN229 glioblastoma cells). A docking study revealed the increased binding affinities of these derivatives compared to sulfanilamide. Hence, these Schiff bases exhibited higher activity compared to their parent drug, with halogen groups playing a crucial role in both their antimicrobial and cytotoxic effects.

2.
Front Microbiol ; 14: 1296447, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249451

RESUMEN

The imbalance of microbial composition and diversity in favor of pathogenic microorganisms combined with a loss of beneficial gut microbiota taxa results from factors such as age, diet, antimicrobial administration for different infections, other underlying medical conditions, etc. Probiotics are known for their capacity to improve health by stimulating the indigenous gut microbiota, enhancing host immunity resistance to infection, helping digestion, and carrying out various other functions. Concurrently, the metabolites produced by these microorganisms, termed postbiotics, which include compounds like bacteriocins, lactic acid, and hydrogen peroxide, contribute to inhibiting a wide range of pathogenic bacteria. This review presents an update on using probiotics in managing and treating various human diseases, including complications that may emerge during or after a COVID-19 infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA