Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003327

RESUMEN

An efficient regioselective approach to novel functionalized bis(isoxazoles) with a variety of aromatic and aliphatic linkers was elaborated, based on the heterocyclization reaction of electrophilic alkenes under the treatment with tetranitromethane-triethylamine complex affording 3-EWG-5-nitroisoxazoles. The subsequent SNAr reactions of 5-nitroisoxazoles with various O,O-, N,N- and S,S-bis(nucleophiles) provide a wide range of bis(isoxazole) derivatives in good isolated yields. Employing an elaborated method, a series of novel bis(3-EWG-isoxazoles) as the promising allosteric modulators of AMPA receptors were designed and synthesized. The effect of the compounds on the kainate-induced currents was studied in the patch clamp experiments, revealing modulator properties for several of them. The best positive modulator potency was found for dimethyl 5,5'-(ethane-1,2-diylbis(sulfanediyl))bis(isoxazole-3-carboxylate), which potentiated the kainate-induced currents in a wide concentration range (10-12-10-6 M) with maximum potentiation of 77% at 10-10 M. The results were rationalized using molecular docking and molecular dynamics simulations of modulator complexes with the dimeric ligand-binding domain of the GluA2 AMPA receptor. The predicted physicochemical, ADMET, and PAINS properties confirmed that the AMPA receptor modulators based on the bis(isoxazole) scaffold may serve as potential lead compounds for the development of neuroprotective drugs.


Asunto(s)
Ácido Kaínico , Receptores AMPA , Receptores AMPA/química , Isoxazoles/farmacología , Ligandos , Simulación del Acoplamiento Molecular
2.
Molecules ; 28(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38005288

RESUMEN

Currently, there are no effective drugs for the treatment of amyotrophic lateral sclerosis (ALS). Only two drugs-edaravone and riluzole-have been approved, but they have very limited efficacy. The aim of this work was to modify the structural core of the Edaravone-phenylpyrazolone moiety and combine it with aminoadamantane pharmacophore in order to expand the spectrum of its action to a number of processes involved in the pathogenesis of ALS. New conjugates of edaravone derivatives with 1-aminoadamantanes combined with alkylene or hydroxypropylene spacers were synthesized, and their biological activity was investigated. Compounds were found that could inhibit lipid peroxidation and calcium-related mitochondrial permeability, block fast sodium currents of CNS neurons, and reduce aggregation of the mutated form of the FUS-protein typical to ALS. So, the proposed modification of the edaravone molecule has allowed the obtaining of new original structures that combine some prospective therapeutic mechanisms against key chains of the pathogenesis of ALS. The identified lead compounds can be used for further optimization and development of new promising drugs on this basis for the treatment of ALS.


Asunto(s)
Adamantano , Esclerosis Amiotrófica Lateral , Fármacos Neuroprotectores , Humanos , Edaravona/farmacología , Edaravona/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Riluzol , Amantadina/uso terapéutico
3.
Molecules ; 27(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36500341

RESUMEN

Positive allosteric modulators (PAMs) of AMPA receptors represent attractive candidates for the development of drugs for the treatment of cognitive and neurodegenerative disorders. Dimeric molecules have been reported to have an especially potent modulating effect, due to the U-shaped form of the AMPA receptor's allosteric binding site. In the present work, novel bis(pyrimidines) were studied as AMPA receptor modulators. A convenient and flexible preparative approach to bis(pyrimidines) containing a hydroquinone linker was elaborated, and a series of derivatives with varied substituents was obtained. The compounds were examined in the patch clamp experiments for their influence on the kainate-induced currents, and 10 of them were found to have potentiating properties. The best potency was found for 2-methyl-4-(4-((2-methyl-5,6,7,8-tetrahydroquinazolin-4-yl)oxy)phenoxy)-6,7,8,9-tetrahydro-5H-cyclohepta[d]pyrimidine, which potentiated the kainate-induced currents by up to 77% in all tested concentrations (10-12-10-6 M). The results were rationalized via the modeling of modulator complexes with the dimeric ligand binding domain of the GluA2 AMPA receptor, using molecular docking and molecular dynamics simulation. The prediction of ADMET, physicochemical, and PAINS properties of the studied bis(pyrimidines) confirmed that PAMs of this type may act as the potential lead compounds for the development of neuroprotective drugs.


Asunto(s)
Pirimidinas , Receptores AMPA , Receptores AMPA/química , Receptores AMPA/metabolismo , Regulación Alostérica , Simulación del Acoplamiento Molecular , Pirimidinas/farmacología
4.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430413

RESUMEN

The development of multi-target-directed ligands (MTDLs) would provide effective therapy of neurodegenerative diseases (ND) with complex and nonclear pathogenesis. A promising method to create such potential drugs is combining neuroactive pharmacophoric groups acting on different biotargets involved in the pathogenesis of ND. We developed a synthetic algorithm for the conjugation of indole derivatives and methylene blue (MB), which are pharmacophoric ligands that act on the key stages of pathogenesis. We synthesized hybrid structures and performed a comprehensive screening for a specific set of biotargets participating in the pathogenesis of ND (i.e., cholinesterases, NMDA receptor, mitochondria, and microtubules assembly). The results of the screening study enabled us to find two lead compounds (4h and 4i) which effectively inhibited cholinesterases and bound to the AChE PAS, possessed antioxidant activity, and stimulated the assembly of microtubules. One of them (4i) exhibited activity as a ligand for the ifenprodil-specific site of the NMDA receptor. In addition, this lead compound was able to bypass the inhibition of complex I and prevent calcium-induced mitochondrial depolarization, suggesting a neuroprotective property that was confirmed using a cellular calcium overload model of neurodegeneration. Thus, these new MB-cycloalkaneindole conjugates constitute a promising class of compounds for the development of multitarget neuroprotective drugs which simultaneously act on several targets, thereby providing cognitive stimulating, neuroprotective, and disease-modifying effects.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Azul de Metileno/farmacología , Ligandos , Enfermedad de Alzheimer/metabolismo , Receptores de N-Metil-D-Aspartato , Calcio/metabolismo , Colinesterasas/metabolismo
5.
RSC Med Chem ; 13(7): 822-830, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35923717

RESUMEN

NMDA (N-methyl-d-aspartate) receptor antagonists are promising tools for the treatment of a wide variety of central nervous system impairments including major depressive disorder. We present here the activity optimization process of a biphenyl-based NMDA negative allosteric modulator (NAM) guided by free energy calculations, which led to a 100 times activity improvement (IC50 = 50 nM) compared to a hit compound identified in virtual screening. Preliminary calculation results suggest a low affinity for the human ether-a-go-go-related gene ion channel (hERG), a high affinity for which was earlier one of the main obstacles for the development of first-generation NMDA-receptor negative allosteric modulators. The docking study and the molecular dynamics calculations suggest a completely different binding mode (ifenprodil-like) compared to another biaryl-based NMDA NAM EVT-101.

6.
Molecules ; 26(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34770819

RESUMEN

A convenient synthetic approach to novel functionalized bis(isoxazoles), the promising bivalent ligands of the AMPA receptor, was elaborated. It was based on the heterocyclization reactions of readily available electrophilic alkenes with the tetranitromethane-triethylamine complex. The structural diversity of the synthesized compounds was demonstrated. In the electrophysiological experiments using the patch clamp technique on Purkinje neurons, the compound 1,4-phenylenedi(methylene)bis(5-aminoisoxazole-3-carboxylate) was shown to be highly potent positive modulator of the AMPA receptor, potentiating kainate-induced currents up to 70% at 10-11 M.

7.
Molecules ; 26(18)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34576998

RESUMEN

A new series of conjugates of aminoadamantane and γ-carboline, which are basic scaffolds of the known neuroactive agents, memantine and dimebon (Latrepirdine) was synthesized and characterized. Conjugates act simultaneously on several biological structures and processes involved in the pathogenesis of Alzheimer's disease and some other neurodegenerative disorders. In particular, these compounds inhibit enzymes of the cholinesterase family, exhibiting higher inhibitory activity against butyrylcholinesterase (BChE), but having almost no effect on the activity of carboxylesterase (anti-target). The compounds serve as NMDA-subtype glutamate receptor ligands, show mitoprotective properties by preventing opening of the mitochondrial permeability transition (MPT) pore, and act as microtubule stabilizers, stimulating the polymerization of tubulin and microtubule-associated proteins. Structure-activity relationships were studied, with particular attention to the effect of the spacer on biological activity. The synthesized conjugates showed new properties compared to their prototypes (memantine and dimebon), including the ability to bind to the ifenprodil-binding site of the NMDA receptor and to occupy the peripheral anionic site of acetylcholinesterase (AChE), which indicates that these compounds can act as blockers of AChE-induced ß-amyloid aggregation. These new attributes of the conjugates represent improvements to the pharmacological profiles of the separate components by conferring the potential to act as neuroprotectants and cognition enhancers with a multifunctional mode of action.


Asunto(s)
Amantadina/química , Amantadina/farmacología , Carbolinas/química , Carbolinas/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Acetilcolinesterasa/química , Amantadina/análogos & derivados , Animales , Butirilcolinesterasa/química , Carboxilesterasa/química , Dominio Catalítico , Línea Celular , Inhibidores de la Colinesterasa/síntesis química , Caballos , Humanos , Cinética , Ligandos , Memantina/química , Memantina/farmacología , Necrosis por Permeabilidad de la Transmembrana Mitocondrial/efectos de los fármacos , Simulación del Acoplamiento Molecular , Propidio/química , Ratas , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Relación Estructura-Actividad , Porcinos , Tubulina (Proteína)/efectos de los fármacos , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología
8.
Curr Mol Pharmacol ; 13(3): 216-223, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32124706

RESUMEN

BACKGROUND: Currently, the most dynamic areas in the glutamate receptor system neurobiology are the identification and development of positive allosteric modulators (PAMs) of glutamate ionotropic receptors. PAM-based drugs are of great interest as promising candidates for the treatment of neurological diseases, such as epilepsy, Alzheimer's disease, schizophrenia, etc. Understanding the molecular mechanisms underlying the biological action of natural and synthetic PAMs is a key point for modifying the original chemical compounds as well as for new drug design. OBJECTIVE: We are trying to elaborate a system of molecular functional screening of ionotropic glutamate receptor probable PAMs. METHODS: The system will be based on the radioligand - receptor method of analysis and will allow rapid quantification of new AMPAR probable PAMs molecular activity. We plan to use a tritiumlabeled analogue of recently elaborated ionotropic GluR probable PAM ([3H]PAM-43) as the main radioligand. RESULTS: Here, we characterized the specific binding of the ligand and its ability to potentiate ionotropic GluR currents. The existence of at least two different sites of [3H]PAM-43 specific binding has been shown. One of the above sites is glutamate-dependent and is characterized by higher affinity. "Patchclamp" technique showed the ability of PAM-43 to potentiate ionotropic GluR currents in rat cerebellar Purkinje neurons in a concentration-dependent manner. CONCLUSION: The possibility of using PAM-43 as a model compound to study different allosteric effects of potential regulatory drugs (AMPAR allosteric regulators) was shown. [3H]PAM-43 based screening system will allow rapid selection of new AMPAR probable PAM structures and quantification of their molecular activity.


Asunto(s)
Agonistas de Aminoácidos Excitadores/farmacología , Células de Purkinje/efectos de los fármacos , Receptores AMPA/agonistas , Potenciales de Acción/efectos de los fármacos , Regulación Alostérica , Sitio Alostérico , Animales , Animales no Consanguíneos , Sitios de Unión , Agonistas de Aminoácidos Excitadores/química , Humanos , Ligandos , Masculino , Estructura Molecular , Técnicas de Placa-Clamp , Células de Purkinje/fisiología , Ensayo de Unión Radioligante , Ratas
9.
Mol Neurobiol ; 57(1): 191-199, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31515692

RESUMEN

A series of new positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors based on 3,7-diazabicyclo[3.3.1]nonane scaffold have been designed, synthesized, and analyzed. In electrophysiological patch clamp studies, several compounds have demonstrated a sub-nanomolar potency. Compound 4 in in vivo tests showed anti-amnestic properties in the scopolamine-induced model of amnesia in the step-through passive avoidance or maximal electroshock experiments in rats at 0.01 mg/kg showing a significant "dose-response" advantage over memantine. Based on the analysis of the flexible docking results of PAMs, the cyclothiazide-like mechanism of binding mode was suggested as the major site for the interaction with AMPA receptors.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/efectos de los fármacos , Receptores AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Regulación Alostérica/efectos de los fármacos , Animales , Benzotiadiazinas/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Hipocampo/metabolismo , Masculino , Ratas Wistar
10.
Medchemcomm ; 10(9): 1615-1619, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31803402

RESUMEN

The first example of a novel class of AMPA receptor positive allosteric modulators of the bis(pyrimidine) series having a hydroquinone linker has been obtained and showed a potency to increase kainate-induced currents at subnanomolar concentrations.

11.
Sci Rep ; 7: 45627, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28358144

RESUMEN

A new group of compounds, promising for the design of original multitarget therapeutic agents for treating neurodegenerative diseases, based on conjugates of aminoadamantane and carbazole derivatives was synthesized and investigated. Compounds of these series were found to interact with a group of targets that play an important role in the development of this type of diseases. First of all, these compounds selectively inhibit butyrylcholinesterase, block NMDA receptors containing NR2B subunits while maintaining the properties of MK-801 binding site blockers, exert microtubules stabilizing properties, and possess the ability to protect nerve cells from death at the calcium overload conditions. The leading compound C-2h has been shown the most promising effects on all analyzed parameters. Thus, these compounds can be regarded as promising candidates for the design of multi-target disease-modifying drugs for treatment of AD and/or similar neuropathologies.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Amantadina/farmacología , Carbazoles/farmacología , Memantina/farmacología , Enfermedad de Alzheimer/metabolismo , Amantadina/análogos & derivados , Carbazoles/química , Carboxilesterasa/antagonistas & inhibidores , Inhibidores de la Colinesterasa/farmacología , Diseño de Fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Humanos , Memantina/análogos & derivados , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Simulación del Acoplamiento Molecular , Unión Proteica , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Sci Rep ; 5: 13164, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26281952

RESUMEN

Alzheimer disease is a multifactorial pathology and the development of new multitarget neuroprotective drugs is promising and attractive. We synthesized a group of original compounds, which combine in one molecule γ-carboline fragment of dimebon and phenothiazine core of methylene blue (MB) linked by 1-oxo- and 2-hydroxypropylene spacers. Inhibitory activity of the conjugates toward acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and structurally close to them carboxylesterase (CaE), as well their binding to NMDA-receptors were evaluated in vitro and in silico. These newly synthesized compounds showed significantly higher inhibitory activity toward BChE with IC50 values in submicromolar and micromolar range and exhibited selective inhibitory action against BChE over AChE and CaE. Kinetic studies for the 9 most active compounds indicated that majority of them were mixed-type BChE inhibitors. The main specific protein-ligand interaction is π-π stacking of phenothiazine ring with indole group of Trp82. These compounds emerge as promising safe multitarget ligands for the further development of a therapeutic approach against aging-related neurodegenerative disorders such as Alzheimer and/or other pathological conditions.


Asunto(s)
Butirilcolinesterasa/química , Carbolinas/química , Fenotiazinas/química , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Sitios de Unión , Butirilcolinesterasa/metabolismo , Carbolinas/administración & dosificación , Inhibidores de la Colinesterasa/administración & dosificación , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Diseño de Fármacos , Activación Enzimática , Humanos , Modelos Químicos , Simulación del Acoplamiento Molecular , Fenotiazinas/administración & dosificación , Unión Proteica , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...