Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 435(20): 168262, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37678707

RESUMEN

Transferrin receptor 1 (TfR) delivers iron across cellular membranes by shuttling the ion carrier protein transferrin. This ability to deliver large protein ligands inside cells is taken advantage of by pathogens to infiltrate human cells. Notably, the receptor's outermost ectodomain, the apical domain, is used as a point of attachment for several viruses including hemorrhagic arenaviruses. To better understand interactions with the receptor it would be advantageous to probe sequence determinants in the apical domain with viral spike proteins. Here, we carried out affinity maturation of our computationally designed apical domain from human TfR to identify underlying driving forces that lead to better binding. The improved variants were confirmed by in vitro surface plasmon resonance measurements with dissociation constants obtained in the lower nanomolar range. It was found that the strong binding affinities for the optimized variants matched the strength of interactions with the native receptor. The structure of the best variant was determined experimentally indicating that the conformational change in the hairpin binding motif at the protein-protein interface plays a crucial role. The experimental methodology can be straightforwardly applied to other arenavirus or pathogens that use the apical domain. It can further be useful to probe host-virus compatibility or therapeutic strategies based on the transferrin receptor decoys.


Asunto(s)
Arenavirus del Nuevo Mundo , Interacciones Huésped-Patógeno , Receptores de Transferrina , Humanos , Arenavirus del Nuevo Mundo/metabolismo , Glicoproteínas/química , Unión Proteica , Receptores de Transferrina/química , Transferrina/química , Transferrina/metabolismo , Proteínas Virales/metabolismo
2.
Molecules ; 25(11)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481666

RESUMEN

Nitrile hydratases (NHase) catalyze the hydration of nitriles to the corresponding amides. We report on the heterologous expression of various nitrile hydratases. Some of these enzymes have been investigated by others and us before, but sixteen target proteins represent novel sequences. Of 21 target sequences, 4 iron and 16 cobalt containing proteins were functionally expressed from Escherichia coli BL21 (DE3) Gold. Cell free extracts were used for activity profiling and basic characterization of the NHases using the typical NHase substrate methacrylonitrile. Co-type NHases are more tolerant to high pH than Fe-type NHases. A screening for activity on three structurally diverse nitriles was carried out. Two novel Co-dependent NHases from Afipia broomeae and Roseobacter sp. and a new Fe-type NHase from Gordonia hydrophobica were very well expressed and hydrated methacrylonitrile, pyrazine-carbonitrile, and 3-amino-3-(p-toluoyl)propanenitrile. The Co-dependent NHases from Caballeronia jiangsuensis and Microvirga lotononidis, as well as two Fe-dependent NHases from Pseudomonades, were-in addition-able to produce the amide from cinnamonitrile. Summarizing, seven so far uncharacterized NHases are described to be promising biocatalysts.


Asunto(s)
Cobalto/metabolismo , Hidroliasas/metabolismo , Hierro/metabolismo , Burkholderiaceae/metabolismo , Catálisis , Escherichia coli/metabolismo , Metaloproteínas/metabolismo , Methylobacteriaceae/metabolismo , Pseudomonas/metabolismo
3.
Chembiochem ; 19(4): 312-316, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29131473

RESUMEN

Hydroxynitrile lyase from the white rabbit's foot fern Davallia tyermannii (DtHNL) catalyzes the enantioselective synthesis of α-cyanohydrins, which are key building blocks for pharmaceutical and agrochemical industries. An efficient and competitive process necessitates the availability and robustness of the biocatalyst. Herein, the recombinant production of DtHNL1 in Komagataella phaffii, yielding approximately 900 000 U L-1 , is described. DtHNL1 constitutes approximately 80 % of the total protein content. The crude enzyme was immobilized. Crosslinked enzyme aggregates (CLEAs) resulted in significant enhancement of the biocatalyst stability under acidic conditions (activity retained after 168 h at pH 2.4). The DtHNL1-CLEA was employed for (R)-mandelonitrile synthesis (99 % conversion, 98 % enantiomeric excess) in a biphasic system, and evaluated for the synthesis of (R)-hydroxypivaldehyde cyanohydrin under reaction conditions that immediately inactivated non-immobilized DtHNL1. The results show the DtHNL1-CLEA to be a stable biocatalyst for the synthesis of enantiomerically pure cyanohydrins under acidic conditions.


Asunto(s)
Aldehído-Liasas/metabolismo , Biocatálisis , Enzimas Inmovilizadas/metabolismo , Helechos/enzimología , Nitrilos/metabolismo , Pichia/enzimología , Aldehído-Liasas/biosíntesis , Aldehído-Liasas/química , Enzimas Inmovilizadas/biosíntesis , Enzimas Inmovilizadas/química , Helechos/microbiología , Nitrilos/química , Agregado de Proteínas , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...