Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38251984

RESUMEN

The structure and diversity of microbial communities are intrinsically hierarchical due to the shared evolutionary history of their constituents. This history is typically captured through taxonomic assignment and phylogenetic reconstruction, sources of information that are frequently used to group microbes into higher levels of organization in experimental and natural communities. Connecting community diversity to the joint ecological dynamics of the abundances of these groups is a central problem of community ecology. However, how microbial diversity depends on the scale of observation at which groups are defined has never been systematically examined. Here, we used a macroecological approach to quantitatively characterize the structure and diversity of microbial communities among disparate environments across taxonomic and phylogenetic scales. We found that measures of biodiversity at a given scale can be consistently predicted using a minimal model of ecology, the Stochastic Logistic Model of growth (SLM). This result suggests that the SLM is a more appropriate null-model for microbial biodiversity than alternatives such as the Unified Neutral Theory of Biodiversity. Extending these within-scale results, we examined the relationship between measures of biodiversity calculated at different scales (e.g. genus vs. family), an empirical pattern previously evaluated in the context of the Diversity Begets Diversity (DBD) hypothesis (Madi et al., 2020). We found that the relationship between richness estimates at different scales can be quantitatively predicted assuming independence among community members, demonstrating that the DBD can be sufficiently explained using the SLM as a null model of ecology. Contrastingly, only by including correlations between the abundances of community members (e.g. as the consequence of interactions) can we predict the relationship between estimates of diversity at different scales. The results of this study characterize novel microbial patterns across scales of organization and establish a sharp demarcation between recently proposed macroecological patterns that are not and are affected by ecological interactions.


Asunto(s)
Evolución Biológica , Microbiota , Modelos Logísticos , Filogenia , Biodiversidad
2.
Phys Rev E ; 108(3-1): 034406, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37849158

RESUMEN

The assumption of constant population size is central in population genetics. It led to a large body of results that is robust to modeling choices and that has proven successful to understand evolutionary dynamics. In reality, allele frequencies and population size are both determined by the interaction between a population and the environment. Relaxing the constant-population assumption has two big drawbacks. It increases the technical difficulty of the analysis, and it requires specifying a mechanism for the saturation of the population size, possibly making the results contingent on model details. Here we develop a framework that encompasses a great variety of systems with an arbitrary mechanism for population growth limitation. By using techniques based on scale separation for stochastic processes, we are able to calculate analytically properties of evolutionary trajectories, such as the fixation probability. Remarkably, these properties assume a universal form with respect to our framework, which depends on only three parameters related to the intergeneration timescale, the invasion fitness, and the carrying capacity of the strains. In other words, different systems, such as Lotka-Volterra or a chemostat model (contained in our framework), share the same evolutionary outcomes after a proper remapping of their parameters. An important and surprising consequence of our results is that the direction of selection can be inverted, with a population evolving to reach lower values of invasion fitness.


Asunto(s)
Evolución Biológica , Genética de Población , Densidad de Población , Procesos Estocásticos , Probabilidad , Dinámica Poblacional
3.
PLoS Comput Biol ; 19(10): e1011532, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792894

RESUMEN

The horizontal transfer of genes is fundamental for the eco-evolutionary dynamics of microbial communities, such as oceanic plankton, soil, and the human microbiome. In the case of an acquired beneficial gene, classic population genetics would predict a genome-wide selective sweep, whereby the genome spreads clonally within the community and together with the beneficial gene, removing genome diversity. Instead, several sources of metagenomic data show the existence of "gene-specific sweeps", whereby a beneficial gene spreads across a bacterial community, maintaining genome diversity. Several hypotheses have been proposed to explain this process, including the decreasing gene flow between ecologically distant populations, frequency-dependent selection from linked deleterious allelles, and very high rates of horizontal gene transfer. Here, we propose an additional possible scenario grounded in eco-evolutionary principles. Specifically, we show by a mathematical model and simulations that a metacommunity where species can occupy multiple patches, acting together with a realistic (moderate) HGT rate, helps maintain genome diversity. Assuming a scenario of patches dominated by single species, our model predicts that diversity only decreases moderately upon the arrival of a new beneficial gene, and that losses in diversity can be quickly restored. We explore the generic behaviour of diversity as a function of three key parameters, frequency of insertion of new beneficial genes, migration rates and horizontal transfer rates.Our results provides a testable explanation for how diversity can be maintained by gene-specific sweeps even in the absence of high horizontal gene transfer rates.


Asunto(s)
Bacterias , Transferencia de Gen Horizontal , Humanos , Transferencia de Gen Horizontal/genética , Bacterias/genética , Evolución Biológica , Genoma
4.
Proc Natl Acad Sci U S A ; 120(37): e2217144120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669363

RESUMEN

Multiple ecological forces act together to shape the composition of microbial communities. Phyloecology approaches-which combine phylogenetic relationships between species with community ecology-have the potential to disentangle such forces but are often hard to connect with quantitative predictions from theoretical models. On the other hand, macroecology, which focuses on statistical patterns of abundance and diversity, provides natural connections with theoretical models but often neglects interspecific correlations and interactions. Here, we propose a unified framework combining both such approaches to analyze microbial communities. In particular, by using both cross-sectional and longitudinal metagenomic data for species abundances, we reveal the existence of an empirical macroecological law establishing that correlations in species-abundance fluctuations across communities decay from positive to null values as a function of phylogenetic dissimilarity in a consistent manner across ecologically distinct microbiomes. We formulate three variants of a mechanistic model-each relying on alternative ecological forces-that lead to radically different predictions. From these analyses, we conclude that the empirically observed macroecological pattern can be quantitatively explained as a result of shared population-independent fluctuating resources, i.e., environmental filtering and not as a consequence of, e.g., species competition. Finally, we show that the macroecological law is also valid for temporal data of a single community and that the properties of delayed temporal correlations can be reproduced as well by the model with environmental filtering.


Asunto(s)
Metagenoma , Microbiota , Filogenia , Estudios Transversales , Metagenómica
5.
Phys Rev E ; 108(1): L012401, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37583239

RESUMEN

Understanding the evolutionary stability of cooperation is a central problem in biology, sociology, and economics. There exist only a few known mechanisms that guarantee the existence of cooperation and its robustness to cheating. Here, we introduce a mechanism for the emergence of cooperation in the presence of fluctuations. We consider agents whose wealth changes stochastically in a multiplicative fashion. Each agent can share part of her wealth as a public good, which is equally distributed among all the agents. We show that, when agents operate with long-time horizons, cooperation produces an advantage at the individual level, as it effectively screens agents from the deleterious effect of environmental fluctuations.

6.
Proc Natl Acad Sci U S A ; 120(17): e2304170120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068257
7.
Phys Rev Lett ; 130(6): 067401, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36827575

RESUMEN

Real-world datasets characterized by discrete features are ubiquitous: from categorical surveys to clinical questionnaires, from unweighted networks to DNA sequences. Nevertheless, the most common unsupervised dimensional reduction methods are designed for continuous spaces, and their use for discrete spaces can lead to errors and biases. In this Letter we introduce an algorithm to infer the intrinsic dimension (ID) of datasets embedded in discrete spaces. We demonstrate its accuracy on benchmark datasets, and we apply it to analyze a metagenomic dataset for species fingerprinting, finding a surprisingly small ID, of order 2. This suggests that evolutive pressure acts on a low-dimensional manifold despite the high dimensionality of sequences' space.

8.
Proc Natl Acad Sci U S A ; 119(30): e2117748119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35862452

RESUMEN

In many natural environments, microorganisms decompose microscale resource patches made of complex organic matter. The growth and collapse of populations on these resource patches unfold within spatial ranges of a few hundred micrometers or less, making such microscale ecosystems hotspots of heterotrophic metabolism. Despite the potential importance of patch-level dynamics for the large-scale functioning of heterotrophic microbial communities, we have not yet been able to delineate the ecological processes that control natural populations at the microscale. Here, we address this challenge by characterizing the natural marine communities that assembled on over 1,000 individual microscale particles of chitin, the most abundant marine polysaccharide. Using low-template shotgun metagenomics and imaging, we find significant variation in microscale community composition despite the similarity in initial species pools across replicates. Chitin-degrading taxa that were rare in seawater established large populations on a subset of particles, resulting in a wide range of predicted chitinolytic abilities and biomass at the level of individual particles. We show, through a mathematical model, that this variability can be attributed to stochastic colonization and historical contingencies affecting the tempo of growth on particles. We find evidence that one biological process leading to such noisy growth across particles is differential predation by temperate bacteriophages of chitin-degrading strains, the keystone members of the community. Thus, initial stochasticity in assembly states on individual particles, amplified through ecological interactions, may have significant consequences for the diversity and functionality of systems of microscale patches.


Asunto(s)
Bacterias , Bacteriófagos , Microbiota , Agua de Mar , Organismos Acuáticos , Bacterias/clasificación , Quitina/metabolismo , Agua de Mar/microbiología , Agua de Mar/virología
9.
PLoS Comput Biol ; 18(5): e1010059, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35500024

RESUMEN

Growing cells adopt common basic strategies to achieve optimal resource allocation under limited resource availability. Our current understanding of such "growth laws" neglects degradation, assuming that it occurs slowly compared to the cell cycle duration. Here we argue that this assumption cannot hold at slow growth, leading to important consequences. We propose a simple framework showing that at slow growth protein degradation is balanced by a fraction of "maintenance" ribosomes. Consequently, active ribosomes do not drop to zero at vanishing growth, but as growth rate diminishes, an increasing fraction of active ribosomes performs maintenance. Through a detailed analysis of compiled data, we show that the predictions of this model agree with data from E. coli and S. cerevisiae. Intriguingly, we also find that protein degradation increases at slow growth, which we interpret as a consequence of active waste management and/or recycling. Our results highlight protein turnover as an underrated factor for our understanding of growth laws across kingdoms.


Asunto(s)
Escherichia coli , Saccharomyces cerevisiae , Escherichia coli/metabolismo , Biosíntesis de Proteínas , Proteolisis , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
10.
PLoS Comput Biol ; 18(4): e1010043, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35363772

RESUMEN

The large taxonomic variability of microbial community composition is a consequence of the combination of environmental variability, mediated through ecological interactions, and stochasticity. Most of the analysis aiming to infer the biological factors determining this difference in community structure start by quantifying how much communities are similar in their composition, trough beta-diversity metrics. The central role that these metrics play in microbial ecology does not parallel with a quantitative understanding of their relationships and statistical properties. In particular, we lack a framework that reproduces the empirical statistical properties of beta-diversity metrics. Here we take a macroecological approach and introduce a model to reproduce the statistical properties of community similarity. The model is based on the statistical properties of individual communities and on a single tunable parameter, the correlation of species' carrying capacities across communities, which sets the difference of two communities. The model reproduces quantitatively the empirical values of several commonly-used beta-diversity metrics, as well as the relationships between them. In particular, this modeling framework naturally reproduces the negative correlation between overlap and dissimilarity, which has been observed in both empirical and experimental communities and previously related to the existence of universal features of community dynamics. In this framework, such correlation naturally emerges due to the effect of random sampling.


Asunto(s)
Conservación de los Recursos Naturales , Microbiota , Benchmarking , Biodiversidad , Modelos Logísticos
11.
Curr Biol ; 32(4): 870-877.e5, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-34990598

RESUMEN

Growth and division are central to cell size. Bacteria achieve size homeostasis by dividing when growth has added a constant size since birth, termed the adder principle, by unknown mechanisms.1,2 Growth is well known to be regulated by guanosine tetraphosphate (ppGpp), which controls diverse processes from ribosome production to metabolic enzyme activity and replication initiation and whose absence or excess can induce stress, filamentation, and small growth-arrested cells.3-6 These observations raise unresolved questions about the relation between ppGpp and size homeostasis mechanisms during normal exponential growth. Here, to untangle effects of ppGpp and nutrients, we gained control of cellular ppGpp by inducing the synthesis and hydrolysis enzymes RelA and Mesh1. We found that ppGpp not only exerts control over the growth rate but also over cell division and thus the steady state cell size. In response to changes in ppGpp level, the added size already establishes its new constant value while the growth rate still adjusts, aided by accelerated or delayed divisions. Moreover, the magnitude of the added size and resulting steady-state birth size correlate consistently with the ppGpp level, rather than with the growth rate, which results in cells of different size that grow equally fast. Our findings suggest that ppGpp serves as a key regulator that coordinates cell size and growth control.


Asunto(s)
Escherichia coli , Guanosina Tetrafosfato , Tamaño de la Célula , Replicación del ADN , Guanosina Tetrafosfato/metabolismo , Ribosomas/metabolismo
12.
Ecol Evol ; 11(22): 16070-16081, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34824812

RESUMEN

Ecologists have long debated the properties that confer stability to complex, species-rich ecological networks. Species-level soil food webs are large and structured networks of central importance to ecosystem functioning. Here, we conducted an analysis of the stability properties of an up-to-date set of theoretical soil food web models that account both for realistic levels of species richness and the most recent views on the topological structure (who is connected to whom) of these food webs. The stability of the network was best explained by two factors: strong correlations between interaction strengths and the blocked, nonrandom trophic structure of the web. These two factors could stabilize our model food webs even at the high levels of species richness that are typically found in soil, and that would make random systems very unstable. Also, the stability of our soil food webs is well-approximated by the cascade model. This result suggests that stability could emerge from the hierarchical structure of the functional organization of the web. Our study shows that under the assumption of equilibrium and small perturbations, theoretical soil food webs possess a topological structure that allows them to be complex yet more locally stable than their random counterpart. In particular, results strongly support the general hypothesis that the stability of rich and complex soil food webs is mostly driven by correlations in interaction strength and the organization of the soil food web into functional groups. The implication is that in real-world food web, any force disrupting the functional structure and distribution pattern of interaction strengths (i.e., energy fluxes) of the soil food webs will destabilize the dynamics of the system, leading to species extinction and major changes in the relative abundances of species.

13.
Sci Adv ; 7(43): eabj2882, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34669476

RESUMEN

The most fundamental questions in microbial ecology concern the diversity and variability of communities. Their composition varies widely across space and time, as a result of a nontrivial combination of stochastic and deterministic processes. The interplay between nonlinear community dynamics and environmental fluctuations determines the rich statistical structure of community variability. We analyze long time series of individual human gut microbiomes and compare intra- and intercommunity dissimilarity under a macroecological framework. We show that most taxa have large but stationary fluctuations over time, while a minority of taxa display rapid changes in average abundance that cluster in time, suggesting the presence of alternative stable states. We disentangle interindividual variability in a stochastic component and a deterministic one, the latter recapitulated by differences in carrying capacities. Last, by combining environmental fluctuations and alternative stable states, we introduce a model that quantitatively predicts the statistical properties of both intra- and interindividual community variability, therefore summarizing variation in a unique macroecological framework.

14.
Phys Rev E ; 104(3-1): 034404, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34654137

RESUMEN

Microbial communities found in nature are composed of many rare species and few abundant ones, as reflected by their heavy-tailed abundance distributions. How a large number of species can coexist in those complex communities and why they are dominated by rare species is still not fully understood. We show how heavy-tailed distributions arise as an emergent property from large communities with many interacting species in population-level models. To do so, we rely on generalized Lotka-Volterra models for which we introduce a global maximal capacity. This maximal capacity accounts for the fact that communities are limited by available resources and space. In a parallel ad hoc approach, we obtain heavy-tailed abundance distributions from logistic models, without interactions, through specific distributions of the parameters. We expect both mechanisms, interactions between many species and specific parameter distributions, to be relevant to explain the observed heavy tails.

15.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33931503

RESUMEN

Despite a boost of recent progress in dynamic single-cell measurements and analyses in Escherichia coli, we still lack a mechanistic understanding of the determinants of the decision to divide. Specifically, the debate is open regarding the processes linking growth and chromosome replication to division and on the molecular origin of the observed "adder correlations," whereby cells divide, adding roughly a constant volume independent of their initial volume. In order to gain insight into these questions, we interrogate dynamic size-growth behavior of single cells across nutrient upshifts with a high-precision microfluidic device. We find that the division rate changes quickly after nutrients change, much before growth rate goes to a steady state, and in a way that adder correlations are robustly conserved. Comparison of these data to simple mathematical models falsifies proposed mechanisms, where replication-segregation or septum completions are the limiting step for cell division. Instead, we show that the accumulation of a putative constitutively expressed "P-sector divisor" protein explains the behavior during the shift.


Asunto(s)
División Celular/genética , Proliferación Celular/genética , Cromosomas Bacterianos/genética , Modelos Teóricos , Ciclo Celular/genética , Replicación del ADN/genética , Escherichia coli/genética , Nutrientes/metabolismo , Análisis de la Célula Individual
16.
Nat Commun ; 11(1): 4743, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958773

RESUMEN

How the coexistence of many species is maintained is a fundamental and unresolved question in ecology. Coexistence is a puzzle because we lack a mechanistic understanding of the variation in species presence and abundance. Whether variation in ecological communities is driven by deterministic or random processes is one of the most controversial issues in ecology. Here, I study the variation of species presence and abundance in microbial communities from a macroecological standpoint. I identify three macroecological laws that quantitatively characterize the fluctuation of species abundance across communities and over time. Using these three laws, one can predict species' presence and absence, diversity, and commonly studied macroecological patterns. I show that a mathematical model based on environmental stochasticity, the stochastic logistic model, quantitatively predicts the three macroecological laws, as well as non-stationary properties of community dynamics.


Asunto(s)
Biodiversidad , Microbiota , Modelos Teóricos , Ecosistema , Procesos Estocásticos
17.
BMC Biol ; 17(1): 102, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31822273

RESUMEN

BACKGROUND: The detrimental effects of a short bout of stress can persist and potentially turn lethal, long after the return to normal conditions. Thermotolerance, which is the capacity of an organism to withstand relatively extreme temperatures, is influenced by the response during stress exposure, as well as the recovery process afterwards. While heat-shock response mechanisms have been studied intensively, predicting thermal tolerance remains a challenge. RESULTS: Here, we use the nematode Caenorhabditis elegans to measure transcriptional resilience to heat stress and predict thermotolerance. Using principal component analysis in combination with genome-wide gene expression profiles collected in three high-resolution time series during control, heat stress, and recovery conditions, we infer a quantitative scale capturing the extent of stress-induced transcriptome dynamics in a single value. This scale provides a basis for evaluating transcriptome resilience, defined here as the ability to depart from stress-expression dynamics during recovery. Independent replication across multiple highly divergent genotypes reveals that the transcriptional resilience parameter measured after a spike in temperature is quantitatively linked to long-term survival after heat stress. CONCLUSION: Our findings imply that thermotolerance is an intrinsic property that pre-determines long-term outcome of stress and can be predicted by the transcriptional resilience parameter. Inferring the transcriptional resilience parameters of higher organisms could aid in evaluating rehabilitation strategies after stresses such as disease and trauma.


Asunto(s)
Caenorhabditis elegans/fisiología , Calor , Termotolerancia , Transcriptoma/fisiología , Animales , Caenorhabditis elegans/genética
18.
Sci Rep ; 9(1): 5580, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30944345

RESUMEN

Empirical evidences show that ecosystems with high biodiversity can persist in time even in the presence of few types of resources and are more stable than low biodiverse communities. This evidence is contrasted by the conventional mathematical modeling, which predicts that the presence of many species and/or cooperative interactions are detrimental for ecological stability and persistence. Here we propose a modelling framework for population dynamics, which also include indirect cooperative interactions mediated by other species (e.g. habitat modification). We show that in the large system size limit, any number of species can coexist and stability increases as the number of species grows, if mediated cooperation is present, even in presence of exploitative or harmful interactions (e.g. antibiotics). Our theoretical approach thus shows that appropriate models of mediated cooperation naturally lead to a solution of the long-standing question about complexity-stability paradox and on how highly biodiverse communities can coexist.


Asunto(s)
Biota/fisiología , Antibacterianos/efectos adversos , Biodiversidad , Biota/efectos de los fármacos , Ecología/métodos , Ecosistema , Modelos Biológicos , Modelos Teóricos , Dinámica Poblacional
19.
Sci Adv ; 4(11): eaau3324, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30417095

RESUMEN

A cell can divide only upon completion of chromosome segregation; otherwise, its daughters would lose genetic material. However, we do not know whether the partitioning of chromosomes is the key event for the decision to divide. We show how key trends in single-cell data reject the classic idea of replication-segregation as the rate-limiting process for cell division. Instead, the data agree with a model where two concurrent processes (setting replication initiation and interdivision time) set cell division on competing time scales. During each cell cycle, division is set by the slowest process (an "AND" gate). The concept of transitions between cell cycle stages as decisional processes integrating multiple inputs instead of cascading from orchestrated steps can affect the way we think of the cell cycle in general.


Asunto(s)
División Celular , Segregación Cromosómica , Cromosomas Bacterianos/genética , Replicación del ADN , ADN Bacteriano/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Ciclo Celular , ADN Bacteriano/genética , Escherichia coli/genética
20.
Cell Rep ; 25(3): 761-771.e4, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332654

RESUMEN

Understanding the classic problem of how single E. coli cells coordinate cell division with genome replication would open the way to addressing cell-cycle progression at the single-cell level. Recent studies produced new data, but the contrast in their conclusions and proposed mechanisms makes the emerging picture fragmented and unclear. Here, we re-evaluate available data and models, including generalizations based on the same assumptions. We show that although they provide useful insights, none of the proposed models captures all correlation patterns observed in data. We conclude that the assumption that replication is the bottleneck process for cell division is too restrictive. Instead, we propose that two concurrent cycles responsible for division and initiation of DNA replication set the time of cell division. This framework allows us to select a nearly constant added size per origin between subsequent initiations as the most likely mechanism setting initiation of replication.


Asunto(s)
División Celular , Cromosomas Bacterianos/genética , Replicación del ADN , ADN Bacteriano/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/genética , Ciclo Celular , Proteínas de Escherichia coli/genética , Modelos Estadísticos , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...