Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(4): e1011575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683878

RESUMEN

Compartmental models that describe infectious disease transmission across subpopulations are central for assessing the impact of non-pharmaceutical interventions, behavioral changes and seasonal effects on the spread of respiratory infections. We present a Bayesian workflow for such models, including four features: (1) an adjustment for incomplete case ascertainment, (2) an adequate sampling distribution of laboratory-confirmed cases, (3) a flexible, time-varying transmission rate, and (4) a stratification by age group. Within the workflow, we benchmarked the performance of various implementations of two of these features (2 and 3). For the second feature, we used SARS-CoV-2 data from the canton of Geneva (Switzerland) and found that a quasi-Poisson distribution is the most suitable sampling distribution for describing the overdispersion in the observed laboratory-confirmed cases. For the third feature, we implemented three methods: Brownian motion, B-splines, and approximate Gaussian processes (aGP). We compared their performance in terms of the number of effective samples per second, and the error and sharpness in estimating the time-varying transmission rate over a selection of ordinary differential equation solvers and tuning parameters, using simulated seroprevalence and laboratory-confirmed case data. Even though all methods could recover the time-varying dynamics in the transmission rate accurately, we found that B-splines perform up to four and ten times faster than Brownian motion and aGPs, respectively. We validated the B-spline model with simulated age-stratified data. We applied this model to 2020 laboratory-confirmed SARS-CoV-2 cases and two seroprevalence studies from the canton of Geneva. This resulted in detailed estimates of the transmission rate over time and the case ascertainment. Our results illustrate the potential of the presented workflow including stratified transmission to estimate age-specific epidemiological parameters. The workflow is freely available in the R package HETTMO, and can be easily adapted and applied to other infectious diseases.


Asunto(s)
Teorema de Bayes , COVID-19 , SARS-CoV-2 , Flujo de Trabajo , Humanos , COVID-19/transmisión , COVID-19/epidemiología , Biología Computacional , Simulación por Computador , Adulto , Suiza/epidemiología
2.
Nature ; 560(7719): 453-455, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30111838

RESUMEN

To constrain the formation history of an exoplanet, we need to know its chemical composition1-3. With an equilibrium temperature of about 4,050 kelvin4, the exoplanet KELT-9b (also known as HD 195689b) is an archetype of the class of ultrahot Jupiters that straddle the transition between stars and gas-giant exoplanets and are therefore useful for studying atmospheric chemistry. At these high temperatures, iron and several other transition metals are not sequestered in molecules or cloud particles and exist solely in their atomic forms5. However, despite being the most abundant transition metal in nature, iron has not hitherto been detected directly in an exoplanet because it is highly refractory. The high temperatures of KELT-9b imply that its atmosphere is a tightly constrained chemical system that is expected to be nearly in chemical equilibrium5 and cloud-free6,7, and it has been predicted that spectral lines of iron should be detectable in the visible range of wavelengths5. Here we report observations of neutral and singly ionized atomic iron (Fe and Fe+) and singly ionized atomic titanium (Ti+) in the atmosphere of KELT-9b. We identify these species using cross-correlation analysis8 of high-resolution spectra obtained as the exoplanet passed in front of its host star. Similar detections of metals in other ultrahot Jupiters will provide constraints for planetary formation theories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...