Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Q J R Meteorol Soc ; 148(744): 1168-1183, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35915744

RESUMEN

Sensors that measure the attenuated backscatter coefficient (e.g., automatic lidars and ceilometers [ALCs]) provide information on aerosols that can impact urban climate and human health. To design an observational network of ALC sensors for supporting data assimilation and to improve prediction of urban weather and air quality, a methodology is needed. In this study, spatio-temporal patterns of aerosol-attenuated backscatter coefficient are modelled using Met Office numerical weather prediction (NWP) models at two resolutions, 1.5 km (UKV) and 300 m (London Model [LM]), for 28 clear-sky days and nights. Initially, attenuated backscatter coefficient data are analysed using S-mode principal component analysis (PCA) with varimax rotation. Four to seven empirical orthogonal functions (EOFs) are produced for each model level, with common EOFs found across different heights (day and night) for both NWP models. EOFs relate strongly to orography, wind, and emissions source location, highlighting these as critical controls of attenuated backscatter coefficient spatial variability across the megacity. Urban-rural differences are largest when wind speeds are low and vertical boundary-layer dynamics can more effectively distribute near-surface aerosol emissions vertically. In several night-time EOFs, gravity-wave features are found for both NWP models. Increasing the horizontal resolution of native ancillaries (model input parameters) and improving the urban surface scheme in the LM may enhance the urban signal in the EOFs. PCA output, with agglomerative Ward cluster analysis (CA), minimises intra-group variance. The UKV and LM CA shape and size results are similar and strongly related to orography. PCA-CA is a simple, but adaptable methodology, allowing close alignment with observation network design goals. Here, CA is used with wind roses to suggest the optimised ALC deployment is one in the city to observe the urban plume and others surrounding the city, with priority given to cluster size and frequency of upwind advection.

2.
Boundary Layer Meteorol ; 184(2): 301-331, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814293

RESUMEN

The heterogenous structure of urban environments impacts interactions with radiation, and the intensity of urban-atmosphere exchanges. Numerical weather prediction (NWP) often characterizes the urban structure with an infinite street canyon, which does not capture the three-dimensional urban morphology realistically. Here, the SPARTACUS (Speedy Algorithm for Radiative Transfer through Cloud Sides) approach to urban radiation (SPARTACUS-Urban), a multi-layer radiative transfer model designed to capture three-dimensional urban geometry for NWP, is evaluated with respect to the explicit Discrete Anisotropic Radiative Transfer (DART) model. Vertical profiles of shortwave fluxes and absorptions are evaluated across domains spanning regular arrays of cubes, to real cities (London and Indianapolis). The SPARTACUS-Urban model agrees well with the DART model (normalized bias and mean absolute errors < 5.5%) when its building distribution assumptions are fulfilled (i.e., buildings randomly distributed in the horizontal). For realistic geometry, including real-world building distributions and pitched roofs, SPARTACUS-Urban underestimates the effective albedo (< 6%) and ground absorption (< 16%), and overestimates wall-plus-roof absorption (< 15%), with errors increasing with solar zenith angle. Replacing the single-exponential fit of the distribution of building separations with a two-exponential function improves flux predictions for real-world geometry by up to half. Overall, SPARTACUS-Urban predicts shortwave fluxes accurately for a range of geometries (cf. DART). Comparison with the commonly used single-layer infinite street canyon approach finds SPARTACUS-Urban has an improved performance for randomly distributed and real-world geometries. This suggests using SPARTACUS-Urban would benefit weather and climate models with multi-layer urban energy balance models, as it allows more realistic urban form and vertically resolved absorption rates, without large increases in computational cost or data inputs. Supplementary Information: The online version contains supplementary material available at 10.1007/s10546-022-00706-9.

3.
Exp Fluids ; 63(6): 92, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35673586

RESUMEN

Abstract: Pollutant dispersion by a tall-building cluster within a low-rise neighbourhood of Beijing is investigated using both full-scale Large-Eddy Simulation and water flume experiments at 1:2400 model-to-full scale with Particle Image Velocimetry and Planar Laser-Induced Fluorescence. The Large-Eddy Simulation and flume results of this realistic test case agree remarkably well despite differences in the inflow conditions and scale. Tall buildings have strong influence on the local flow and the development of the rooftop shear layer which dominates vertical momentum and scalar fluxes. Additional measurements using tall-buildings-only models at both 1:2400 and 1:4800 scales indicates the rooftop shear layer is insensitive to the scale. The relatively thicker incoming boundary layer affects the Reynolds stresses, the relative size of the pollutant source affects the concentration statistics and the relative laser-sheet thickness affects the spatially averaged results of the measured flow field. Low-rise buildings around the tall building cluster cause minor but non-negligible offsets in the peak magnitude and vertical location, and have a similar influence on the velocity and concentration statistics as the scale choice. These observations are generally applicable to pollutant dispersion of realistic tall building clusters in cities. The consistency between simulations and water tunnel experiments indicates the suitability of both methodologies.

5.
Environ Sci Technol ; 55(2): 842-853, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33410677

RESUMEN

The formation of isoprene nitrates (IsN) can lead to significant secondary organic aerosol (SOA) production and they can act as reservoirs of atmospheric nitrogen oxides. In this work, we estimate the rate of production of IsN from the reactions of isoprene with OH and NO3 radicals during the summertime in Beijing. While OH dominates the loss of isoprene during the day, NO3 plays an increasingly important role in the production of IsN from the early afternoon onwards. Unusually low NO concentrations during the afternoon resulted in NO3 mixing ratios of ca. 2 pptv at approximately 15:00, which we estimate to account for around a third of the total IsN production in the gas phase. Heterogeneous uptake of IsN produces nitrooxyorganosulfates (NOS). Two mono-nitrated NOS were correlated with particulate sulfate concentrations and appear to be formed from sequential NO3 and OH oxidation. Di- and tri-nitrated isoprene-related NOS, formed from multiple NO3 oxidation steps, peaked during the night. This work highlights that NO3 chemistry can play a key role in driving biogenic-anthropogenic interactive chemistry in Beijing with respect to the formation of IsN during both the day and night.


Asunto(s)
Hemiterpenos , Nitratos , Aerosoles/análisis , Beijing , Butadienos/análisis , Hemiterpenos/análisis , Nitratos/análisis
6.
Faraday Discuss ; 226: 149-172, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33346283

RESUMEN

Air quality in cities is influenced not only by emissions and chemical transformations but also by the physical state of the atmosphere which varies both temporally and spatially. Increasingly, tall buildings (TB) are common features of the urban landscape, yet their impact on urban air flow and dispersion is not well understood, and their effects are not appropriately captured in parameterisation schemes. Here, hardware models of areas within two global mega-cities (London and Beijing) are used to analyse the impact of TB on flow and transport in isolated and cluster settings. Results show that TB generate strong updrafts and downdrafts that affect street-level flow fields. Velocity differences do not decay monotonically with distance from the TB, especially in the near-wake region where the flow is characterised by recirculating winds and jets. Lateral distance from an isolated TB centreline is crucial, and flow is still strongly impacted at longitudinal distances of several TB heights. Evaluation of a wake-flow scheme (ADMS-Build) in the isolated TB case indicates important characteristics are not captured. There is better agreement for a slender, shorter TB than a taller non-cuboidal TB. Better prediction of flow occurs horizontally further away and vertically further from the surface. TB clusters modify the shape of pollutant plumes. Strong updrafts generated by the overlapping wakes of TB clusters lift pollutants out of the canopy, causing a much deeper tracer plume in the lee of the cluster, and an elevated plume centreline with maximum concentrations around the TB mean height. Enhanced vertical spread of the pollutants in the near-wake of the cluster results in overall lower maximum concentrations, but higher concentrations above the mean TB height. These results have important implications for interpreting observations in areas with TB. Using real world ceilometer observations in two mega-cities (Beijing and Paris), we assess the diurnal seasonal variability of the urban boundary layer and evaluate a mixed layer height (MLH) empirical model with parameters derived from a third mega-city (London). The MLH model works well in central Beijing but less well in suburban Paris. The variability of the physical meteorology across different vertical scales discussed in this paper provides additional context for interpreting air quality observations.

7.
Urban Clim ; 33: 100623, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32292692

RESUMEN

Integrated Urban hydrometeorological, climate and environmental Services (IUS) is a World Meteorological Organization (WMO) initiative to aid development of science-based services to support safe, healthy, resilient and climate friendly cities. Guidance for Integrated Urban Hydrometeorological, Climate and Environmental Services (Volume I) has been developed with the intent to provide an overview of the concept, methods and good practices for producing and providing these services to respond to urban hazards across a range of time scales (weather to climate). This involves combining (dense) heterogeneous observation networks, high-resolution forecasts, multi-hazard early warning systems and climate services to assist cities in setting and implementing mitigation and adaptation strategies for the management and building of resilient and sustainable cities. IUS includes research, evaluation and delivery with a wide participation from city governments, national hydrometeorological services, international organizations, universities, research institutions and private sector stakeholders. An overview of the IUS concept with key messages, examples of good practice and recommendations are provided. The research community will play an important role to: identify critical research challenges; develop impact forecasts and warnings; promote and deliver IUS internationally, and; support national and local communities in the implementation of IUS thereby contributing to the United Nations' Sustainable Development Goals at all scales.

8.
Sci Rep ; 8(1): 11498, 2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-30065389

RESUMEN

One important challenge facing the urbanization and global environmental change community is to understand the relation between urban form, energy use and carbon emissions. Missing from the current literature are scientific assessments that evaluate the impacts of different urban spatial units on energy fluxes; yet, this type of analysis is needed by urban planners, who recognize that local scale zoning affects energy consumption and local climate. Satellite-based estimation of urban energy fluxes at neighbourhood scale is still a challenge. Here we show the potential of the current satellite missions to retrieve urban energy budget fluxes, supported by meteorological observations and evaluated by direct flux measurements. We found an agreement within 5% between satellite and in-situ derived net all-wave radiation; and identified that wall facet fraction and urban materials type are the most important parameters for estimating heat storage of the urban canopy. The satellite approaches were found to underestimate measured turbulent heat fluxes, with sensible heat flux being most sensitive to surface temperature variation (-64.1, +69.3 W m-2 for ±2 K perturbation).  They also underestimate anthropogenic heat fluxes. However, reasonable spatial patterns are obtained for the latter allowing hot-spots to be identified, therefore supporting both urban planning and urban climate modelling.

9.
Urban Ecosyst ; 21(2): 227-243, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31258324

RESUMEN

Local aerodynamic roughness parameters (zero-plane displacement, z d , and aerodynamic roughness length, z 0 ) are determined for an urban park and a suburban neighbourhood with a new morphometric parameterisation that includes vegetation. Inter-seasonal analysis at the urban park demonstrates z d determined with two anemometric methods is responsive to vegetation state and is 1-4 m greater during leaf-on periods. The seasonal change and directional variability in the magnitude of z d is reproduced by the morphometric methods, which also indicate z 0 can be more than halved during leaf-on periods. In the suburban neighbourhood during leaf-on, the anemometric and morphometric methods have similar directional variability for both z d and z 0 . Wind speeds at approximately 3 times the average roughness-element height are estimated most accurately when using a morphometric method which considers roughness-element height variability. Inclusion of vegetation in the morphometric parameterisation improves wind-speed estimation in all cases. Results indicate that the influence of both vegetation and roughness-element height variability are important for accurate determination of local aerodynamic parameters and the associated wind-speed estimates.

10.
Boundary Layer Meteorol ; 164(2): 183-213, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32025040

RESUMEN

Nine methods to determine local-scale aerodynamic roughness length ( z 0 ) and zero-plane displacement ( z d ) are compared at three sites (within 60 m of each other) in London, UK. Methods include three anemometric (single-level high frequency observations), six morphometric (surface geometry) and one reference-based approach (look-up tables). A footprint model is used with the morphometric methods in an iterative procedure. The results are insensitive to the initial z d and z 0 estimates. Across the three sites, z d varies between 5 and 45 m depending upon the method used. Morphometric methods that incorporate roughness-element height variability agree better with anemometric methods, indicating z d is consistently greater than the local mean building height. Depending upon method and wind direction, z 0 varies between 0.1 and 5 m with morphometric z 0 consistently being 2-3 m larger than the anemometric z 0 . No morphometric method consistently resembles the anemometric methods. Wind-speed profiles observed with Doppler lidar provide additional data with which to assess the methods. Locally determined roughness parameters are used to extrapolate wind-speed profiles to a height roughly 200 m above the canopy. Wind-speed profiles extrapolated based on morphometric methods that account for roughness-element height variability are most similar to observations. The extent of the modelled source area for measurements varies by up to a factor of three, depending upon the morphometric method used to determine z d and z 0 .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...